
Learning Model Predictive Control: Theory and Applications

by

Ugo Rosolia

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Francesco Borrelli, Chair
Professor Roberto Horowitz

Associate Professor Mark Mueller
Associate Professor Benjamin Recht

Fall 2019



Learning Model Predictive Control: Theory and Applications

Copyright 2019
by

Ugo Rosolia



1

Abstract

Learning Model Predictive Control: Theory and Applications

by

Ugo Rosolia

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

In control design, the goal is to synthesize policies which map observations to control actions.
Two key elements characterize today’s modern design problems: an abundance of historical
data and tasks which are in full or in part repetitive. The requirements are state and input
constraint satisfaction, and performance is assessed by evaluating the cost associated with
the closed-loop trajectories.

In iterative control design, the policy is updated using historical data from past executions
of the control task. The policy update strategy should guarantee

• (a) recursive constrain satisfaction,

• (b) iterative performance improvement with respect to previous executions, and

• (c) locally optimal behavior at convergence.

At present few methodologies are available to iteratively design predictive control policies,
which satisfying the above requirements. The most common approaches resort to update
the policy after performing system identification. Guarantees are provided for constraint
satisfaction, but not for iterative performance improvements and/or optimality.

This thesis introduces an iterative control design methodology for constrained linear and
nonlinear systems performing iterative tasks. It leads to algorithms which iteratively syn-
thesize predictive control policies for classes of systems, where there are few, or no tools,
currently available.

We will focus on three classes of discrete time dynamical systems: (i) constrained linear
systems, (ii) constrained nonlinear systems, and (iii) constrained uncertain linear systems.
For these three classes of systems we study iterative optimal control problems and we exploit



2

knowledge of the system dynamics and historical closed-loop data in the synthesis process.
After each iteration of the control task, we construct a policy which uses forecast to compute
safe control actions, and it is guaranteed to improve the closed-loop performance associated
with stored historical data.

We call this approach the Learning Model Predictive Control (LMPC) framework. For the
above systems, we introduce the policy design which exploits historical data to compute
(i) a control invariant set that represents a safe set of states from which the control task
can be completed and (ii) a control Lyapunov function which for each state of the safe set
approximates the closed-loop cost of completing the task. By using the propose syntheses,
we prove that properties (a),(b) and (c) can be guaranteed for the three classes of discrete
time dynamical systems under consideration.

We start by presenting the LMPC design for linear and nonlinear system subject to convex
and nonconvex constraints. Then, we focus on minimum time optimal control problems
for linear and nonlinear systems. Afterwards, we solve the robust case for linear systems
subject to bounded additive uncertainty. Finally, we present a data based policy to reduce
the computational burden of the LMPC at convergence.

In the concluding part of the thesis, we present a system identification strategy tailored
to iterative tasks and we demonstrate the applicability of the proposed approach through
autonomous racing experiments on the Berkeley Autonomous Race Car (BARC) platform.
Experimental results show that the LMPC safely learns to race a vehicle at the limits of
handling.



i

To my parents and Agata



ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Invariant Sets and Control Lyapunov Functions 6
2.1 Invariant, Reachable and Controllable Sets for Deterministic Systems . . . . 6
2.2 Invariant, Reachable and Controllable Sets for Uncertain Systems . . . . . . 7
2.3 Lyapunov and Input-to-State Stability . . . . . . . . . . . . . . . . . . . . . 8

3 Predictive Control Policies: Synthesis and Improvement 10
3.1 Dynamic Optimization and Predictive Control . . . . . . . . . . . . . . . . . 10
3.2 Review of Iterative Improvement Strategies . . . . . . . . . . . . . . . . . . . 12
3.3 Safety and Performance in Predictive Control . . . . . . . . . . . . . . . . . 13

4 LMPC for Deterministic Systems 15
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Safe Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Q-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Time-Varying LMPC for Time Optimal Problems 44
5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Safe Set and Value Function Approximation . . . . . . . . . . . . . . . . . . 45
5.3 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



iii

5.5 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 LMPC for Uncertain Systems 68
6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Safe Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Q-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 Sampled Based Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Feedback Policy Parametrization for Robust LMPC 86
7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Certainty Equivalent LMPC 110
8.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Autonomous Racing Experiments 119
9.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.3 System Identification Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10 Data-Based Policy 131
10.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11 Conclusions 147
11.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography 150



iv

List of Figures

3.1 Loss of feasibility and optimality. We notice that for N = 3 the controller steers
the system to the state x = [11.64; 11.64] from which Problem (3.2) is not feasible.
On the other hand, for N = 4 the MPC completes the regulation task, but the
closed-loop trajectory is not optimal. . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Representation of two closed-loop trajectories in the phase plane for the iterative
regulation control problem. Notice that both trajectories start from the same
state x0

0 = x1
0 = xs and reach the same terminal state x0

4 = x1
4 = xF . . . . . . . . 17

4.2 Representation of the convex safe set and sampled safe set constructed using two
closed-loop trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 The figure shows the Q-function and the convex Q-function constructed using one
stored trajectory. We notice that the Q-function is defined over a set of discrete
points, and the convex Q-function is defined over a convex domain. In particular,
the convex Q-function a piece-wise affine interpolation of the Q-function. . . . . 21

4.4 The blue dots represent the samples safe set from 4.6 and the green stars represent
the planned open-loop trajectory given by the optimal solution to problem (4.17).
Finally, the red squares represent the closed-loop trajectory. Notice that at time
t = 0 the state of the system equals the starting states xS, and at time t = 1 the
state of the system equals the first predicted state at the previous time step t = 0. 23

4.5 Sampled safe set, optimal trajectory to (4.25) and closed-loop trajectory at iter-
ation j = {1, 2, 4, 20}. We notice that the LMPC iteratively improves the per-
formance of the closed-loop system, until it converges to the optimal closed-loop
behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Evolution of the iteration cost through the iterations. . . . . . . . . . . . . . . . 29
4.7 Comparison between the first feasible trajectory x0 and the steady state trajec-

tory x10 at the 10th iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 The acceleration and steering inputs associated with the closed-loop trajectory

x10 at the 10th iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.9 The velocity profile of the closed-loop trajectory x10 at the 10th iteration. . . . 32



v

5.1 Representation of the time varying safe set SS2
2. We notice that just a subset of

the stored states are used to define SS2
2. Furthermore, we notice that from all

states xit ∈ SS2
2 system (5.1) can be steered to xF in at most T j,∗ − t = 2 time

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Representation of the Q-function Q0

0(·) and convex Q-function Q̄0
0(·). We notice

that the Q-function Q0
0(·) is defined over a set of discrete data points, whereas

the convex Q-function Q̄0
0(·) is defined over the convex safe set. . . . . . . . . . 48

5.3 Representation of the time varying safe subset SS2,1
2,2. We notice that just a subset

of the stored states are used to define SS2,1
2,2. . . . . . . . . . . . . . . . . . . . . 55

5.4 Notice that the Q-function Q0,0
0,3(·) is defined over a set of discrete data points,

whereas the convex Q-function Q̄0,0
0,3(·) is defined over the convex safe set. . . . . 57

5.5 Time steps T j to reach xF as a function of the iteration index. We notice that
as more data points are used in the synthesis process, the number of iterations
needed to reach a steady state behavior decreases. . . . . . . . . . . . . . . . . . 58

5.6 Computational cost associated with the LMPC policy at each time t as function of
the iteration index. We notice that as more data points are used in the synthesis
process, the computational cost increases. . . . . . . . . . . . . . . . . . . . . . 59

5.7 First feasible trajectory, stored data points and closed-loop trajectory at the 6th
iteration. We notice that the LMPC is able to avoid the obstacle at each iteration. 59

5.8 Acceleration and speed profile at convergence. We notice that the controller
accelerates for the first 8 time steps and afterwards it decelerates to reach the
terminal state goal state with zero velocity. . . . . . . . . . . . . . . . . . . . . . 60

5.9 Time steps T j to reach xF as a function of the iteration index. We notice that,
also in this example, as more data points are used in the synthesis process, the
number of iterations needed to reach a steady state behavior decreases. . . . . . 61

5.10 First feasible trajectory and closed-loop trajectories at the 10th iteration. We
notice that all LMPC policies converged to as similar behavior. . . . . . . . . . 61

5.11 Acceleration inputs associated with the closed-loop trajectories at the 10th iter-
ation. We notice that the controller saturated the acceleration constraints. . . . 62

5.12 Time steps T j to reach xF as a function of the iteration index. We notice that as
more points P and iterations i are used to synthesize the relaxed LMPC policy,
the closed-loop system converges faster to a steady state behavior. . . . . . . . . 63

5.13 Comparison between the first feasible trajectory used to initialize the LMPC and
the steady state LMPC closed-loop trajectories at convergence. . . . . . . . . . 64

5.14 Comparison of the steady state inputs associated with the relaxed LMPC policies.
We notice that the acceleration and deceleration is saturated, as we expect from
the optimal solution to a minimum time optimal control problem. . . . . . . . . 64

5.15 Randomly sampled states used to check that Assumption 6 is approximately
satisfied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.16 Randomly sampled states used to check that Assumption 6 is approximately
satisfied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



vi

5.17 Randomly sampled states used to check that Assumption 6 is approximately
satisfied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Representation of the robust convex safe set CS1 (dashed green line) at iteration
j = 1. The figure reports also the N -steps robust reachable sets Rt(x

1
0) (dashed

blue line) and the robust invariant set O (solid black line). . . . . . . . . . . . . 71
6.2 Approximated robust reachable sets R̃t from (6.18) construct using 1000 roll-

outs. We notice that the approximated robust reachable sets R̃t are an inner
approximation the robust reachable sets Rt from (6.5). . . . . . . . . . . . . . . 77

6.3 The approximated robust reachable sets R̃t (6.18) used to construct C̃S1
with

R = 100 and R = 1000 roll-outs. Notice that the approximated convex safe set

C̃S1
constructed using 1000 roll-outs contains the one constructed using 100. . . 80

6.4 Approximated value function Q̃j(·) constructed with R = 100 and R = 1000 roll-
outs. Note that as more trajectories are used the value of Q̃j(·) increases almost
everywhere, thus it better approximated Qj(·). . . . . . . . . . . . . . . . . . . . 81

6.5 For iterations j ∈ {2, 4, 8} and i = {1, . . . , 1000} disturbance realizations we
show the closed-loop trajectories xj(wj

i ) from (6.17). Furthermore, we report the
initial condition xj0 which is further from the origin at each iteration. . . . . . . 82

6.6 Approximated value function Q̃j at the 2nd, 4th and 8th iteration. Notice that
the domain of Q̃j is enlarged at each iteration. . . . . . . . . . . . . . . . . . . . 83

6.7 Worst-case realized cost and realized cost of the LMPC over the iteration in-
dex. We notice that the LMPC improves the worst-case realized cost from the
suboptimal controller at the 0th iteration, until it reaches convergence. . . . . . 84

6.8 Comparison between the LMPC policy at convergence and the optimal policy
from [13, Section 3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.9 Stored data point needed to construct the approximated Q-function from (6.24)
and total data points processed during the iterative process. . . . . . . . . . . . 85

7.1 Convex-hull of the stored states and O (dashed red line) and the robust reachable
sets Rt→t+k(x

j
0) (dashed blue line). We notice that the convex-hull of the stored

states and O does not contain the robust reachable sets Rt→t+k(x
j
0) and therefore

it is not a robust invariant for the closed-loop system (7.6). . . . . . . . . . . . . 89
7.2 Representation of the convex safe set CS1 (dashed green line) and the robust

reachable sets Rt→t+k(x
1
0) (dashed blue line). . . . . . . . . . . . . . . . . . . . . 90

7.3 Comparison between the robust safe set and Q-function at the first and last
iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Evolution of the robust Q-function Qj through the iterations. Notice that Qj(·)
(in blue) is lower-bounded by Qj+1(·) (in red) for all i ∈ {3, 5, 7, 11}, unitl con-
vergence is reached and Q11(·) = Q12(·). . . . . . . . . . . . . . . . . . . . . . . 103

7.5 Evolution of the robust safe set through the iterations . . . . . . . . . . . . . . . 104
7.6 Closed-loop trajectories for different disturbance realizations. . . . . . . . . . . . 104
7.7 Closed-loop trajectories for different disturbance realizations and initial conditions.105



vii

8.1 Iteration cost at each iteration. We notice that the cost is decreasing until it
converges to the optimal cost to Problem (8.19). . . . . . . . . . . . . . . . . . . 116

8.2 Comparison between the optimal trajectory (in black) and the closed-loop trajec-
tories (in blue) at iteration j = {2, 3, 5, 15}. We notice that as more iterations are
performed the sampled safe set (in red) is enlarged and the closed-loop trajectory
is closer to the optimal one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3 Closed-loop simulations for 1000 Monte-Carlo simulations. We notice that the
state constraints are robustly satisfied. . . . . . . . . . . . . . . . . . . . . . . . 118

9.1 Representation of the vehicle’s position in the curvilinear reference frame. . . . . 120
9.2 Lap time of the LMPC on the oval-shaped and L-shaped tracks. . . . . . . . . . 127
9.3 The first row in the above figure shows the closed-loop trajectory used to initialize

the LMPC and the closed-loop trajectories after few laps of learning. The second
row shows the steady state trajectories at which the LMPC has converged. Notice
that the scale of the color bar changes from the first to the second row, as the
vehicle runs at higher speed after the learning process has converged. . . . . . . 128

9.4 Recorded lateral acceleration of the vehicle running on the oval-shaped track (top
row) and L-shaped track (bottom row). . . . . . . . . . . . . . . . . . . . . . . . 129

9.5 Data points used in the LMPC design at each lap. . . . . . . . . . . . . . . . . . 129
9.6 The first rows shows the computational cost associated with the FTOCP. In

the second row we reported the computational cost associated with the system
identification strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.1 Closed-loop trajectories performed by the data-based policy. . . . . . . . . . . . 139
10.2 In red squares are shown the closed-loop trajectories performed by the data-based

policy on the oval-shaped track. In blue circles are reported three trajectories in
the sampled safe set. Finally, the green dashed line marks the centerline of the
track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.3 Lap time on L-shaped track over the lap number. At the 30th lap the data-
based policy drives the vehicle around the track without worsening the closed
loop-performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.4 Closed-loop trajectory and associated inputs of the data-based policy and LMPC
on the oval-shaped track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.5 Closed-loop trajectory and associated inputs of the data-based policy and LMPC
on the L-shaped track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



viii

List of Tables

4.1 Time steps to complete the task at each jth iteration . . . . . . . . . . . . . . . 30

6.1 Initial condition xj0 at each jth iteration. . . . . . . . . . . . . . . . . . . . . . . 82

7.1 Closed-loop cost J j0→∞(x0) for iteration i ∈ {0, . . . , 4}. . . . . . . . . . . . . . . . 102
7.2 Performance of the LMPC policy (7.24) and the safe policy (7.21) in closed-loop

with the uncertain system (7.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.1 Parameters used in the controller design. . . . . . . . . . . . . . . . . . . . . . . 127

10.1 Comparison of the realized cost and value function for different initial conditions 140
10.2 Comparison of the realized cost and value function for different initial conditions 140
10.3 Comparison of computational time . . . . . . . . . . . . . . . . . . . . . . . . . 144



ix

Acknowledgments

First and foremost, I would like to thank my advisor, Francesco Borrelli, for his support and
guidance throughout my graduate studies. I am grateful for all his advice on research and
professional life. I feel lucky to have had the opportunity to work in his lab. The lessons
I have learned during these years have shaped me as a researcher and engineer, those will
have lifelong influence on my future.

I would also like to thank Professor Roberto Horowitz, Professor Mark Mueller, Professor
Benjamin Recht for serving on my dissertation committee, and Professor Recht’s group for
the joint lab meetings which influenced my research and broadened my horizons. I am also
grateful to all the mentors that I encountered during my undergrad and master studies at
Politecnico di Milano and University of Illinois at Urbana-Champaign. I would like to thank
Prof. Francesco Braghin for supervising my master thesis and to Prof. Andrew Alleyne
for giving me the opportunity to conduct research in his lab. This experience was of key
importance for my graduate studies. Finally, I would like to thank Dr. Stijn De Bruyne for
introducing me to the world of experimental testing during my internship at Siemens.

I would like to acknowledge Xiaojing (George) Zhang, which has been a great mentor.
His vision, constructive feedback and suggestions were fundamentals for this thesis. I would
also like to thank my colleague Jon Gonzales, without his help the experiments on the
Berkeley Autonomous Race Car (BARC) would not have been possible. I would also like
to acknowledge Ashwin Carvalho, Siddharth Nair and Nitin Kapania for their help testing
on the full-size vehicle. Last but not least, I would like to thank Lukas Brunke, Maximilian
Brunner, Martin D’Hoffschmidt, Michael Garstka, Felix Nobis, Francesco Ricciuti and Shuqi
Xu. It was a pleasure and a great learning experience working with you. I hope that I made
your master thesis studies interesting and rewarding.

The MPC lab has been home for the past 4 years. I would like to thank Ashwin Carvalho,
Ziya Ercan, Jon Gonzales, Sarah Koehler and Theresa Lin for their warm welcome. During
my stay in Berkeley I have met a long list of wonderful people Brian Cera, Fang-Chieh
Chou, Roya Firoozi, Vijay Govindarajan, Yeojun Kim, Yi-Wen Liao, Greg Marcil, Siddharth
Nair, Dimitris Papadimitriou, Charlott Vallon, Xu Shen, Nicola Scianca, Tony Zheng and
Edward Zhu who made these years special. Thanks to Monimoy Bujarbaruah for all the fun
conversations and dinner at iHouse. Thanks to all my soccer teammates and in particular
to Ramon for carrying our team to the semi-final of the IM league. A special thanks goes to
Jacopo Guanetti end Paolo Micalizzi for being like family away from home. Thanks Jacopo
for all the support and the delicious dinners from the Artusi’s recipes book, and thanks Paolo
for your positive energy and enlightening conversations during all the surfing trips.

I am grateful to my wonderful family: aunts, uncles, cousins and my grandfather Attilio
which is a source of inspiration. Thanks to my “little” brother Giorgio and my parents
Antonio and Titti for being closed even from the other side of the ocean. Your support has
been incredible during these years. Finally, I want to thank Agata for being on my side
everyday since high-school and for her unconditional love. I cannot image a past and future
without you by my side.



1

Chapter 1

Introduction

In control design, the goal is to synthesize policies which map observations to control actions.
Two key elements characterize today’s modern design problems: abundance of historical
data and tasks which are in full or in part repetitive. The increasing sensing and data
storage capabilities give us precious information which can be used for control design [1].
Experimental testing may be used to assess the closed-loop performance of the system, but
the control policies deployed on experimental hardware should guarantee safety. For instance,
autonomous vehicles companies could evaluate fuel efficiency by leveraging the 11 terabyte
of data collected every day [2]. However, safety should be guaranteed at all times during
experimental testing.

In iterative control design, the policy is updated using historical data from past execu-
tions of the control task. The policy update strategy should guarantee: state and input
constraint satisfaction, iterative performance improvement and (local) optimality at conver-
gence. At present few methodologies are available to iteratively design predictive policies,
which satisfy these requirements. The most common approaches resorts to update the pol-
icy after performing system identification [3, 4, 5, 6, 7, 8, 9]. These strategies guarantee
safety. However, the iterative performance improvements and/or optimality properties are
not analyzed, when the controller is implemented using a receding horizon strategy.

This thesis introduces an iterative control design methodology for three classes of dis-
crete time dynamical systems: constrained linear systems, constrained nonlinear systems,
and constrained uncertain linear systems. For these three classes of systems, we study it-
erative optimal control problems and we exploit knowledge of the system dynamics and
historical closed-loop data in the synthesis process. After each iteration of the control task,
we construct a policy which uses forecast to compute safe control actions, and it is guar-
anteed to improve or match the closed-loop performance associated with stored historical
data.

Forecasting the effects of the control actions is possible when at least one of the following
components is given: (i) a model to predict the system trajectory for a given initial state and
input sequence, (ii) a safe set of states from which the control task can be completed using
safe policy and (iii) a value function, which for a given safe policy, maps each state of the



CHAPTER 1. INTRODUCTION 2

safe set to the closed-loop cost to complete the task. These three elements play a key role
in several policy synthesis strategies such as Model Predictive Control (MPC), Approximate
Dynamic Programming (ADP) and Reinforcement Learning (RL) [10, 11, 12, 13, 14].

MPC is an established control methodology which systematically uses forecast to compute
control actions [10]. In MPC at each time step, a model is used to predict the evolution
of the system over a time horizon. The sequence of control actions is chosen such that the
predicted trajectory safely drives the system from the current measured state to the safe set,
and it minimizes the predicted cost over the horizon and the future cost given by a value
function. The MPC policy applies the first predicted input to the system, and the process
is repeated at the next time step based on the new measurement, yielding to a moving or
receding horizon control strategy.

In ADP and RL the value function mapping states or state-action pairs to the closed-loop
cost is defined over the entire state space. This value function is used to synthesis the control
policy and it affects the performance of the closed-loop system. In particular, the closed-
loop performance improves as the value function better approximates the optimal closed-loop
cost. In ADP and RL, this approximation is iteratively improved by synthesizing control
policies and evaluating their closed-loop performance, either with model-based simulations
or with model-free experiments. A survey on policy evaluation strategies used to construct
value functions is beyond the scope of this work and we refer the reader to [13, 14] for a
comprehensive review on the topic.

This thesis proposes a Learning Model Predictive Control (LMPC) framework which
exploits historical data and knowledge of the system dynamics to iteratively synthesize safe
control policies. We consider autonomous systems performing iterative tasks and we exploit
the closed-loop data in the synthesis process. As in MPC, the proposed strategy computes the
control action after forecasting the evolution of the system over a time horizon. Similarly
to ADP and RL strategies, we use historical data to update the safe set and the value
function used in the synthesis process. We show that the proposed strategy guarantees: (i)
safety : state and input constraints are recursively satisfied, (ii) performance improvement :
the closed-loop cost does not increase at each execution of the control task, (iii): stability:
the closed-loop system asymptotically completes the task. Furthermore we show that, under
mild assumptions, if the policy update process has converged (i.e. using new closed-loop
data in the synthesis process does not change control policy), then the closed-loop behavior
is optimal for the entire task. Finally, we present a system identification strategy tailored
to iterative tasks and we demonstrate the applicability of the proposed approach through
autonomous racing experiments on the Berkeley Autonomous Race Car (BARC) platform.
Experimental results show that the LMPC safely learns to race a vehicle at the limits of
handling. Furthermore, we show that at convergence the control policy can be approximated
using a model-free strategy, which significantly reduces the computational burden, while
guaranteeing safety and performance bounds.



CHAPTER 1. INTRODUCTION 3

1.1 Outline

This thesis is divided in three parts. The first part, which includes Chapters 4-5, illustrates
the LMPC design for deterministic systems. The second parts describes the policy synthesis
strategy for uncertain systems. In particular, in Chapters 6-8 we describe three design
strategies based on different parametrizations of the feedback policy, which is used to forecast
the evolution of the closed-loop system. Finally, the thirds part of the thesis illustrates
the experiments performed on the Berkeley Autonomous Race Car (BARC) platform. In
Chapter 9, we present the system identification strategy used to implement the LMPC,
and in Chapter 10 we propose a methodology to reduce the computational complexity of
the controller once the learning process has converged. The contributions of the individual
chapters are highlighted below.

Chapter 2, Technical Background.
In this chapter, we introduce some basic notions from control theory. We will rely on these
notions throughout the thesis.

Chapter 3, Predictive Control Policies: Synthesis and Improvement.
In this chapter, we first introduce a design methodology to synthesize predictive policies
which use forecast to compute control actions. Afterwards, we survey iterative strategies
to improve the synthesis process exploiting historical data. Finally, we recall some of the
challenges associated with the design problem, which are illustrated on a numerical example.

Chapter 4, Learning Model Predictive Control for Deterministic Systems.
This chapter describes the Learning Model Predictive Control strategy for known determin-
istic systems. First we show how to use historical data to construct safe sets and approxima-
tions to the value function. Afterwards, we introduce the controller design and we illustrate
its properties. Finally, we test the proposed strategy on the constrained LQR problem and on
minimum time dubins vehicle problem. We show that the proposed strategy iteratively ex-
plores the state space to improve the closed-loop performance while guaranteeing safety. The
python code for all examples is available online at https://github.com/urosolia/LMPC.

Chapter 5, Learning Model Predictive Control for Time Optimal Problems.
In time optimal control problems, the goal of the controller is to steer the system from the
starting point xS to the terminal point xF in minimum time, while satisfying state and input
constraints. In this chapter, we focus on these problems, and we show how to design a Time-
Varying Learning Model Predictive Controller (LMPC) which guarantees recursive constraint
satisfaction, convergence in finite time and iterative performance improvement. Compared
with the previous chapter, the safe set and approximation to the value function are time
varying. Furthermore, we show that these quantities can be convexified to design a relaxed
LMPC, which guarantees safety and performance improvement for a class of nonlinear system
and convex constraints. Finally, we illustrate the effectiveness of the proposed strategies on
minimum time obstacle avoidance and racing examples. The python code for all examples
is available online at https://github.com/urosolia/LMPC.

Chapter 6, Learning Model Predictive Control for Uncertain Systems.
In this chapter, we first illustrate the challenges associated with the computation of safe sets

https://github.com/urosolia/LMPC
https://github.com/urosolia/LMPC


CHAPTER 1. INTRODUCTION 4

from stored data of uncertain systems. Afterwards, we present an LMPC design method-
ology, where we used tools from set theory to construct robust safe set and approximation
to the value function. We show that the proposed strategy guarantees recursive robust
constraint satisfaction, iterative worst-case performance improvement and convergence to a
neighborhood of the origin, regardless of the disturbance realization. Furthermore, we show
that the computational burden associated with the LMPC design may be reduced using
sampled closed-loop trajectories. In particular, we use roll-outs of the closed-loop system to
approximate the safe set and the value function. Finally, we test the proposed strategy on a
uncertain double integrator exampled and on parking problem.

Chapter 7 Robust LMPC via Feedback Policy Parametrization.
As we have discussed in the previous chapters, the LMPC computes the control action by
solving a finite time optimal control problem over a moving time window. When uncertainty
is acting on the system, the control problem is carried over a space of feedback policies.
Such space should contain the safe policies, which may be used to complete the control task
from any state into the safe set. If this condition is not verified, then the control design
is challenging. In this chapter, we proposed an adaptive prediction horizon strategy which
allows us to pick the space of feedback policies used by the LMPC independently form the
terminal safe set. First, we illustrate how to construct robust robust sets from historical
data and we characterized the associated safe control policies. Then, we propose an iterative
LMPC design procedure, where data generated by a robust controller at iteration j are used
to design a robust LMPC at the next j+ 1 iteration. We show that this procedure allows us
to iteratively enlarge the domain of the LMPC policy and it guarantees recursive constraints
satisfaction, input to state stability and performance bounds for the certainty equivalent
closed-loop system. The effectiveness of the proposed control scheme is illustrated on a
linear system subject to bounded additive disturbance.

Chapter 8, Certainty Equivalent Learning Model Predictive Control.
In the previous chapters we presented robust LMPC strategies based on different parametriza-
tion of the control policies. The computational burden associated with these strategies in-
creases with the respect to the nominal case, as the controller forecasts the evolution of the
system using feedback policies. In this chapter, we represent the uncertain system as the
summation of a certainty equivalent and an error dynamics. Then, we propose a robust
LMPC policy which exploits the certainty equivalent system to predict a nominal trajectory
and the error dynamics to guarantee robust constraint satisfaction. The main advantage
of proposed strategy is that the on-line computational cost does not increase with respect
to the nominal case. Nevertheless, we show robust constraint satisfaction and performance
improvement properties for the closed-loop system.

Chapter 9, System Identification for Autonomous Racing.
In this chapter, we illustrate the system identification strategy used to implement the Learn-
ing Model Predictive Controller (LMPC) for autonomous racing. We model the autonomous
racing problem as a minimum time iterative control task, where an iteration corresponds to
a lap. The system trajectory and input sequence of each lap are stored and used to system-
atically update the controller for the next lap. The first part of this chapter, we introduce a



CHAPTER 1. INTRODUCTION 5

local LMPC which reduces the computational burden associated with the strategy proposed
in Chapter 4. Afterwards, we present a system identification strategy for the autonomous
racing iterative control task. We use data from previous iterations and the vehicle’s kinematic
equations of motion to build an affine time-varying prediction model. The effectiveness of
the proposed strategy is demonstrated by experimental results on the Berkeley Autonomous
Race Car (BARC) platform.

Chapter 10, Data-Based Policy.
As we have discussed in the previous chapters, the control action given by the LMPC policy
is computed solving a finite time optimal control problem over a moving time horizon. This
receding horizon strategy allows the controller to deviate from the previous iterations of
the control task in order to improve the closed-loop performance. In this chapter, we show
how to synthesize a data-based policy, which does not explore the state space, but it is
able to math the closed-loop performance of the trajectories used in the synthesis process.
Therefore, this strategy may be used to reduce the computational burden of the LMPC
once the learning process has converged. The proposed strategy is model-free and can be
applied whenever safe input and state trajectories of a system performing an iterative task
are available. These trajectories, together with a user-defined cost function, are exploited
to construct a piecewise affine approximation to the value function. The approximated
value function is then used to compute the control action by solving a linear program. We
show that for linear system subject to convex cost and constraints, the proposed strategy
guarantees closed-loop constraint satisfaction and performance bounds for the closed-loop
trajectory. We evaluate the proposed strategy in simulations and experiments, the latter
carried out on the Berkeley Autonomous Race Car (BARC) platform. We show that the
proposed strategy is able to reduce the computation time associated with the LMPC policy
by one order of magnitude while achieving the same performance.



6

Chapter 2

Invariant Sets and Control Lyapunov
Functions

We recall some definitions from set theory [10, Chapter 10] and the definition of Input-to-
State-Stability, which will be used throughout this thesis.

2.1 Invariant, Reachable and Controllable Sets for

Deterministic Systems

In this section, we consider the following deterministic system

xt+1 = f(xt, ut) (2.1)

where the state xt ∈ Rn and the input xt ∈ Rn. Furthermore, we introduce the state and
input constraints

xt ∈ X , ut ∈ U , ∀t ≥ 0. (2.2)

For system (2.1) subject to constraints (2.2) we recall the following definitions.

Definition 1 (One-step predecessor set to the set S) For the system (2.1) , we de-
note the one-step predecessor set to the set S as

Pre(S) , {x ∈ Rn : ∃u ∈ U s.t. f(x, u) ∈ S}. (2.3)

Definition 2 (One-step controllable set to the set S) For the system (2.1), we de-
note the one-step controllable set to the set S as

K1(S) = Pre(S) ∩ X . (2.4)

K1(S) is the set of states which can be driven into the target set S in one time step while
satisfying input and state constraints. N -step controllable sets are defined by iterating K1(S)
computations.



CHAPTER 2. INVARIANT SETS AND CONTROL LYAPUNOV FUNCTIONS 7

Definition 3 (N -step controllable set KN(S)) For a given target set S ⊆ X , the N-
step controllable set KN(S) of the system (2.1) subject to the constraints (4.2) is defined
recursively as:

Kj(S) , Pre(Kj−1(S)) ∩ X , K0(S) = S, j ∈ {1, . . . , N} (2.5)

From Definition 3, all states x0 of the system (2.1) belonging to the N -Step Controllable Set
KN(S) can be driven, by a suitable control sequence, to the target set S in N steps, while
satisfying input and state constraints.

Definition 4 (Maximal controllable set K∞(O)) For a given target set O ⊆ X , the
maximal controllable set K∞(O) for system (2.1) subject to the constraints in (4.2) is the
union of all N-step controllable sets KN(O) contained in X (N ∈ N).

We will use controllable sets KN(O) where the target O is a control invariant set [15]. They
are special sets, since in addition to guaranteeing that from KN(O) we reach O in N steps,
one can ensure that once it has reached O, the system can stay there at all future time
instants. These sets are called stabilizable set.

Definition 5 (N -step (maximal) stabilizable set) For a given control invariant set O ⊆
X , the N-step (maximal) stabilizable set of the system (2.1) subject to the constraints (4.2)
is the N-step (maximal) controllable set KN(O) (K∞(O)).

Since the computation of Pre-set is numerically challenging for nonlinear systems, there is
extensive literature on how to obtain an approximation (often conservative) of the maximal
stabilizable set [16].

Definition 6 (One-step successor set from the set S) For system (2.1) we denote the
one-step successor set from the set S as

Succ(S) , {x ∈ Rn : ∃x(0) ∈ S,∃u ∈ U s.t. f(x(0), u) = x}. (2.6)

Definition 7 (Positive invariant set) A set O ⊆ X is said to be a positive invariant set
for the system (2.1) and the feedback policy π(x), if

x ∈ O → f(x, π(x)) ∈ O.

2.2 Invariant, Reachable and Controllable Sets for

Uncertain Systems

In this section, we consider uncertain linear time invariant systems. The following definitions
will be used later of to synthesize robust controllers.



CHAPTER 2. INVARIANT SETS AND CONTROL LYAPUNOV FUNCTIONS 8

Definition 8 (Robust positive invariant set) A set O ⊆ X is said to be a robust pos-
itive invariant set for the uncertain autonomous system xt+1 = Axt + wt, with wt ∈ W
if

x ∈ O → Ax+ w ∈ O, ∀w ∈ W .

Definition 9 (Robust control positive invariant set) A set C ⊆ X is said to be a ro-
bust control positive invariant set for the uncertain system xt+1 = Axt + But + wt, with
wt ∈ W and ut ∈ U , if

x ∈ C → ∃u ∈ U : Ax+Bu+ w ∈ C, ∀w ∈ W .

Positive robust positive invariant and robust control positive invariant will be used through-
out this thesis to guarantee robust constraint satisfaction.

Definition 10 (Robust successor set) Given a control policy π(·) and the closed-loop
system xt+1 = Axt +Bπ(xt) + wt, we denote the robust successor set from the set S as

Succ(S,W) = {xt+1 ∈ Rn : ∃xt ∈ S,∃wt ∈ W such that xt+1 = Axk +Bπ(xt) + wt}.

Given the initial state xt, the robust successor set Succ(xt,W) collects the states that the
uncertain autonomous system may reach in one time step.

Definition 11 (N-step robust reachable set) Given a
control policy π(·) and the closed-loop system xt+1 = Axt +Bπ(xt) +wt with wt ∈ W for all
t ≥ 0, we recursively define the N-step robust reachable set from the set S as

Rt→t+k+1(S) = Succ(Rt→t+k(S),W), Rt→t(S) = S

for k = {0, . . . , N − 1}. Robust reachable sets are also referred to as forwards reachable sets.

Given a linear time-invariant system, the N -Step robust reachable setRt→t+N(S,W) collects
the state which can be reached from the set S in N -steps.

2.3 Lyapunov and Input-to-State Stability

This section introduces the definitions of Lyapunov stability and Input-to-State Stabil-
ity (ISS).

Definition 12 (Lyapunov stability) The equilibrium point x = 0 of the autonomous sys-
tem xt+1 = f(xk) is stable in the sense of Lyapunov if ∀ε > 0 there exists δ > 0 such
that

||x0|| ≤ ε→ ||xt|| ≤ δ, ∀t ≥ 0.

In the following, we introduce sufficient conditions to verify stability of an equilibrium point
of the autonomous system xt+1 = f(xk).



CHAPTER 2. INVARIANT SETS AND CONTROL LYAPUNOV FUNCTIONS 9

Proposition 1 Consider the equilibrium point x = 0 of system xt+1 = f(xt, ut). Let Ω ⊂ Rn

be a closed and bounded set containing the origin. Assume there exists a function V : Rn → R
continuous at the origin, finite for every x ∈ Ω, and such that

V (0) = 0 and V (x) > 0,∀x ∈ Ω \ {0} (2.7a)

V (f(x))− V (x) ≤ 0. (2.7b)

Then x = 0 is asymptotically in the sense of Lyapunov on Ω.

Definition 13 (Lyapunov function) A function V (·) satisfying conditions 2.7a-2.7b is
called a Lyapunov Function.

Next, we introduce the definition of control Lyapunov function. We will exploit control
Lyapunov functions to guarantee closed-loop stability.

Definition 14 (Control Lyapunov function) Consider system xt+1 = f(xt, ut) subject
to the state and input constraint, xt ∈ X and ut ∈ U . Assume that S is a control invaraint
set and h(x, u) is the stage cost of the control problem. Then, the function Q : Rn → R is a
control Lyapunov function over the set S if

∀x ∈ S, min
u∈U

[
h(x, u) +Q(f(x, u))−Q(x)

]
≤ 0.

Finally, we recall the definition of Input to State Stability (ISS) of a robust invariant set
[17], which extends the more widely known notion of ISS of an equilibrium point [18, 19, 20,
21]. We use the standard function classes K, K∞ and KL notation (see [22]) and we define
the distance from a point x ∈ Rn to a set O ⊆ Rn as

|x|O
∆
= inf

d∈O
||x− d||2.

Definition 15 (Input to State Stability (ISS) [17]) Let O be an robust positive invari-
ant set for the autonomous system xt+1 = Axt +Bπ(xt) +wt with wt ∈ W. We say that the
closed-loop system is ISS with respect to O if for all wt ∈ W, t ≥ 0, x0 ∈ X

|xt+1|O ≤ β(|x0|O, t+ 1) + γ
(
supk∈{0,...,t}||wk||

)
,

where β(·, ·) is a class-KL function and γ(·) is a class-K function.



10

Chapter 3

Predictive Control Policies: Synthesis
and Improvement

In this chapter, we first introduce a design methodology to synthesize predictive policies
which use forecast to compute control actions. Afterwards, we survey iterative strategies to
improve the synthesis process exploiting historical data. Finally, we illustrate some of the
challenges associated with the design problem using a numerical example.

3.1 Dynamic Optimization and Predictive Control

The goal of the synthesis process is to design a control policy which guarantees safety and
optimal performance for the closed-loop system. These objectives can be often described by
a dynamic optimization problem. For instance, consider a dynamical system described by
the update equation xt+1 = f(xt, ut)

1, where the control input ut ∈ Rd and the system state
xt ∈ Rn. For a control task starting at x(0), the control policy should apply to the system
the optimal sequence of inputs U∗T = {u∗0, u∗1, ...} solving the following infinite time optimal
control problem:

min
u0,u1,...

∞∑
t=0

h(xt, ut) (3.1a)

subject to: xt+1 = f(xt, ut),∀t ∈ {0, 1, . . .} (3.1b)

xt ∈ X , ut ∈ U ,∀t ∈ {0, 1, . . .} (3.1c)

x0 = x(0). (3.1d)

In the above dynamic optimization problem, safety is encoded through the sets X and U ,
which represent state and input constraints in (3.1c). The performance of the closed-loop
system is quantified by the running cost h(·, ·) which we would like to minimize.

1For simplicity we assumed that the system is deterministic, the synthesis process for uncertain systems
in described in Chapters 6-8.



CHAPTER 3. PREDICTIVE CONTROL POLICIES: SYNTHESIS AND
IMPROVEMENT 11

For a particular task starting from x(0), one may be tempted to compute the optimal
input sequence to Problem (3.1) and apply it to the system. There are two difficulties
associated with this idea. First, the infinite (or long) duration of the autonomous task can
easily render the solution to (3.1) hard. Second, the model f(·) used to predict the evolution
of the real system can be inaccurate, and even a small prediction error which cumulate at
each time step can comprise the success and/or optimality of the closed-loop behavior. To
alleviate both issues, it is common practice to (i) predict over a horizon N shorter than task
duration and (ii) continuously measure the state of the system, say once every time step,
and then recompute new control sequences with updated information from the environment.
Commonly, the procedure we have described above is referred to as Model Predictive Control
(MPC) [10, 23, 24, 25, 26, 27]. At the generic time t, an MPC policy solves the following
problem

min
u0,...,uN−1

N−1∑
t=0

h(xt, ut) +Q(xN) (3.2a)

subject to: xt+1 = f(xt, ut),∀t ∈ {0, . . . , N − 1} (3.2b)

xt ∈ X , ut ∈ U , ∀t ∈ {0, . . . , N − 1} (3.2c)

xN ∈ XN , (3.2d)

x0 = x(t). (3.2e)

where x(t) is the measured state at time t.
Let U∗N = {u∗0(x(t)), . . . , u∗N−1(x(t))} be the optimal solution of (3.2) at time t. Then,

the first element of U∗N is applied to the system and the resulting MPC policy is:

πMPC
(
x(t)

)
= u∗0(x(t)). (3.3)

In the above equation we use u∗i (x(t)) to emphasize that the optimal solution depends on
the current state x(t). Later on, whenever obvious, the simpler notation u∗i will be used. At
the next time step t + 1, the optimization problem (3.2) is solved again based on the new
state x0 = x(t+ 1), yielding a moving or receding horizon control strategy.

Problem (3.2) compared to problem (3.1) is solved over a shorter horizon N , and it uses
a terminal cost Q(·) and terminal constraint set XN to “approximate” cost and constraints
beyond the perdition horizon.The choice and the role of Q(·) and XN are critical in MPC
design and will be discussed at length later in this chapter.

We point out that it is important to distinguish between the real state x(t) and input
u(t) of the system at time t, and the predicted states xt and inputs ut in the optimization
problem. Indeed, often a more complex notation is used, where one differentiates between
the state xk|t at time k predicted at time t, and the state xk|t+1 at time k predicted at time
t+ 1. We will use the complex notation later on whenever necessary.



CHAPTER 3. PREDICTIVE CONTROL POLICIES: SYNTHESIS AND
IMPROVEMENT 12

3.2 Review of Iterative Improvement Strategies

Exploiting historical data in order to iteratively improve the performance of MPC policies
has been an active theme of research in the past few decades [3, 4, 5, 6, 7, 28, 8, 29, 30, 31,
32, 33]. The key idea is to use the stored state, input and cost data to update at least one
of the following elements which define the MPC policy: i) the prediction model in (3.2b),
ii) a safe set used as a terminal constraint set in (3.2d) and iii) a value function used as a
terminal cost function in (3.2a).

Policy evaluation strategies used to estimate value functions from historical data are stud-
ied in Approximate Dynamic Programming (ADP) and Reinforcement Learning (RL) [14,
13, 12]. For instance, direct strategies compute the estimate value function which best fits
the closed-loop cost data over the stored states. On the other hand, in indirect strategies the
estimate value function is computed by iteratively minimizing the temporal difference [34,
35]. A survey on policy evaluation strategies goes beyond the scope of this thesis, we refer
the reader to [13, 14] for a comprehensive review on this topic.

The integration of MPC with system identification strategies used to estimate the pre-
diction model has been extensively studied in the literature [3, 6, 5, 7, 4, 29, 8, 36, 37, 31,
38]. In adaptive MPC strategies [39, 40, 41, 42, 43, 44, 45, 46], set-membership approaches
are used to identify the set of possible parameters and/or the domain of the uncertainty
which characterize the system’s model. Afterwards, robust MPC strategies for additive [47]
or parametric [48, 49] uncertainty are used to guarantee robust recursive constraint satisfac-
tion. Another strategy to identify the system dynamics is to fit a Gaussian Process (GP) to
experimental data [5, 7, 4, 6, 50]. GP can be used to identify a nominal model and confidence
bounds, which may be used to tighten the constraint set over the planning horizon. This
strategy provides high-probability safety guarantees [50, 5, 7]. The effectiveness of GP-based
strategies on experimental platform has been shown in [7, 6], where an MPC is used to race
a 1/43-scale vehicle and to safely fly a drone. Regression strategies may also be used to
identify a nominal model and the disturbance domain used for robust MPC design [8, 51,
52]. For instance, the authors in [8, 51, 52, 9, 53] used a linear regression strategy to identify
both a nominal model and the disturbance domain used for robust MPC design. In [9, 53]
the authors computed norm error bounds for the nominal model and afterward they used a
system level synthesis strategy for robust control design [54].

Model-based and data-based approaches for computing safe sets have also been proposed
in literature [55, 56, 57, 58, 59, 36, 37, 60, 61, 62]. In reachability-based strategies safe
sets are computed solving a two players game between the controller and the disturbance
[55, 56, 57]. Furthermore, these strategies provide a control policy which can be used to
guarantee safety by robustly constraining the evolution of the system into the safe set [55].
Also viability theory may be used to compute safe sets [58]. The authors in [58] showed how
to compute an inner approximation of the viability kernel and demonstrated the effectiveness
on a RC-car set-up. The authors in [59] proposed a linear model predictive safety certification
framework, where a safe sets is computed exploiting closed-loop data generated by a robust
controller. In [36, 37] the authors computed safe sets combining stored trajectories with



CHAPTER 3. PREDICTIVE CONTROL POLICIES: SYNTHESIS AND
IMPROVEMENT 13

polyhedron and ellipsoidal invariant sets. Another approach is proposed in [60] where the
stored trajectories are mirrored to construct invariant sets.

3.3 Safety and Performance in Predictive Control

It is clear that the prediction model plays a crucial role in determining the success of MPC
policies. If the prediction model is inaccurate, then the closed-loop system will deviate from
the MPC planned trajectory. This deviation may result in poor closed-loop performance and
safety constraint violation. It is less obvious that, when a perfect system model is used to
design an MPC policy, the wrong choice of terminal constraint set and terminal cost function
may cause undesirable closed-loop behavior.

Recall that the predictive controller (3.2) and (3.3) plans the system’s trajectory over a
horizon of length N , which is usually much smaller than the task duration in (3.1). With
short horizon N the controller only takes shortsighted control actions, which may be unsafe or
may result in poor closed-loop performance. For instance, in autonomous racing a predictive
controller that plans the vehicle’s trajectory over a short horizon without taking into account
an upcoming curve, may accelerate to the point that safe turning would be infeasible. In
this example, shortsighted control actions would force the closed-loop system to violate the
safety constraints at a certain time instant. Furthermore, shortsighted control actions may
lead to poor closed-loop performance. Consider an autonomous agent trying to escape from
a maze along the shortest path, a predictive controller may take a sub-optimal decision, if
the short prediction horizon does not allow the controller to plan a trajectory which reaches
the exit.

In order to avoid such situations, we need to design controllers which take into account
the evolution of the system beyond the prediction horizon. As mentioned earlier, a com-
monly used solution is to introduce a terminal cost Q(·) and terminal constraint set XN in
problem (3.2) in order to “approximate” cost and constraints from time N to competition
of the control task. The choice and the role of Q(·) and XN are critical in any MPC de-
sign. Properly chosen Q(·) and XN ensure safety and performance bounds for closed-loop
system despite short horizon N . In particular, the terminal constraint set XN should be an
invariant set and the terminal function Q(·) should be a Lyapunov function over XN , for
the autonomous system controlled by uk = v(xk)

2.

3.3.1 Example: Loss of Feasibility and Optimality

In this section, we illustrate on a numerical example that shortsighted control actions may
lead the controller to unsafe or poor closed-loop behaviors. We consider the following double
integrator system

xt+1 =

[
1 1
0 1

]
xt +

[
0
1

]
ut

2A formal definition of invariant set and Lyapunov function can be found in Section 2.



CHAPTER 3. PREDICTIVE CONTROL POLICIES: SYNTHESIS AND
IMPROVEMENT 14

subject to the state constraint xt ∈ X = {x ∈ R2 : ||x||∞ ≤ 15} and the input constraint
ut ∈ U = {u ∈ R2 : ||u||∞ ≤ 15} for all t ≥ 0. In order to regulate the system to the origin,
we implemented the MPC policy (3.3) without a terminal cost and constraint, with Q = I,
R = 10 and for different horizon lengths.

Figure 3.1 shows the comparison between different closed-loop trajectories and the op-
timal one. We notice that for N = 3, the MPC is not able to regulate the system to the
origin. In particular, shortsighted control actions steer the system to a state from which the
finite time optimal control problem (3.2) is not feasible. On the other hand, for N = 4 the
MPC is able to complete the regulation task, but the closed-loop behavior is suboptimal.

Figure 3.1: Loss of feasibility and optimality. We notice that for N = 3 the controller steers
the system to the state x = [11.64; 11.64] from which Problem (3.2) is not feasible. On the
other hand, for N = 4 the MPC completes the regulation task, but the closed-loop trajectory
is not optimal.



15

Chapter 4

Learning Model Predictive Control
for Deterministic Systems

In this chapter, we introduce the Learning Model Predictive Controller for deterministic
systems. First, we show how historical data can be used to construct control invariant sets
and control Lyapunov functions. Afterwards, we exploit these quantities in the controller
design, which guarantees recursive constraint satisfaction and non-decreasing closed-loop
cost at each iteration. Finally, we test the controller on deterministic linear and nonlinear
systems1.

4.1 Problem Formulation

This section introduces the control problem. We consider the discrete time system

xt+1 = f(xt, ut), (4.1)

where the state xt ∈ Rn and the input ut ∈ Rm. We assume that f(·, ·) is continuous and
that state and inputs are subject to the following constraints

xt ∈ X , ut ∈ U , ∀t ≥ 0. (4.2)

At the jth iteration the vectors

uj = [uj0, u
j
1, ..., u

j
t , ...], (4.3a)

xj = [xj0, x
j
1, ..., x

j
t , ...], (4.3b)

collect the inputs applied to system (4.1) and the corresponding state evolution. In (4.3),
xjt and ujt denote the system state and the control input at time t of the jth iteration. We

1All code is available at https://github.com/urosolia/LMPC

https://github.com/urosolia/LMPC


CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 16

assume that at each jth iteration the closed loop trajectories start from the same initial
state, i.e.,

xj0 = xS, ∀j ≥ 0. (4.4)

Our objective is to design a controller which solves the following infinite horizon optimal
control problem at each iteration:

J∗0→∞(xS) = min
u0,u1,...

∞∑
t=0

h(xt, ut) (4.5a)

s.t. xt+1 = f(xt, ut),∀t ∈ {0, 1, . . .} (4.5b)

xt ∈ X , ut ∈ U ,∀t ∈ {0, 1, . . .} (4.5c)

x0 = xS, (4.5d)

where equations (4.5b) and (4.5d) represent the system dynamics and the initial condition,
and (4.5c) are the state and input constraints. We assume that the stage cost h(·, ·) in
equation (4.5a) is continuous and it satisfies

h(xF , 0) = 0 and h(xjt , u
j
t) � 0 ∀ xjt ∈ Rn \ {xF}, ujt ∈ Rm \ {0},

where the final state xF is assumed to be a feasible equilibrium for the unforced system (4.1),
that is f(xF , 0) = xF . Throughout this chapter we assume that a local optimal solution to
Problem (4.5) exists and it is denoted as:

x∗ = [x∗0, x
∗
1, ..., x

∗
t , ...],

u∗ = [u∗0, u
∗
1, ..., u

∗
t , ...].

Remark 1 By assumption, the stage cost h(·, ·) in (4.1) is continuous, strictly positive
and zero at xF . Thus, an optimal solution to (4.5) converges to the final point xF , i.e.
limt→∞ x

∗
t = xF .

Remark 2 In practical applications each iteration has a finite-time duration. It is com-
mon in the literature to adopt an infinite time formulation at each iteration for the sake
of simplicity. We follow such an approach in this chapter. Our choice does not affect the
practicality of the proposed method.

Figure 4.1 shows two closed-loop trajectories (4.3) for an iterative regulation task, where
the goal of the controller is to steer the system from xS towards xF . Next, we show that
these closed-loop trajectories can be used to construct a safe set of states from which the
control task may be completed. Afterwards, we construct a value function which maps each
state of the safe set to the closed-loop cost.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 17

Figure 4.1: Representation of two closed-loop trajectories in the phase plane for the iterative
regulation control problem. Notice that both trajectories start from the same state x0

0 =
x1

0 = xs and reach the same terminal state x0
4 = x1

4 = xF .

4.2 Safe Set

In this section, we exploit the iterative nature of the control problem to construct safe sets.
We show that the set of states visited during a successful iteration is safe. This fact is used
to define discrete, convex and local safe sets which will be used in the controller design to
guarantee recursive constraint satisfaction for the closed-loop system.

4.2.1 Sampled Safe Set

We notice that, if πj(·) is a feedback policy which is able to safely execute the desired task,
then the set of states visited by closed-loop system

xjt+1 = f(xjt , π
j(xjt))

is safe. Indeed, if at time k of the ith iteration the system’s state xik equals a state xjt which
has been visited at time t of the jth iteration, then the feedback policy πj(·) will drive the
system along the jth trajectory. This obvious fact is a consequence of the system been
deterministic and it implies that states visited during successful iterations are safe. More
importantly, if the policy πj(·) steers the system to an equilibrium point, then the set of
visited states is a control invariant set. Thus, at iteration j we define the sampled Safe Set
SSj as the set of successful closed-loop trajectories, i.e.,

SSj =

{ ⋃
i∈Mj

∞⋃
t=0

xit

}
(4.6)

where the set
M j =

{
i ∈ [0, j] : lim

t→∞
xit = xF

}
(4.7)



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 18

collects the indexes i associated with successful iterations for i ≤ j. Notice that by definition
M i ⊆M j,∀i ≤ j and therefore SS i ⊆ SSj,∀i ≤ j.

Remark 3 Note that SSj can be interpreted as a sampled subset of the maximal stabilizable
set K∞(xF ) from Chapter 2 as for every point in the set, there exists a feasible control action
which satisfies the state constraints and steers the system towards xF .

4.2.2 Convex Safe Set

In this section, we introduce the convexification of SSj. For linear systems and convex
constraints, this convexifications will allows us to compute the control action by solving a
convex optimization problem.

We define the convex safe set set as the convex hull of SSj from (4.6),

CSj = conv(SSj)

= {x ∈ Rn : ∀i ∈ {0, ..., j},∃λj ≥ 0 such that

j∑
i=0

λj1 = 1, x =

j∑
i=0

λjxj}.
(4.8)

Notice that for linear time invariant system subject convex state and input constraints, the
above convex safe set is a control invariant set. Therefore, it may be used in a predictive con-
trol schema to guarantee recursive constraint satisfaction. The convex safe set and sampled
convex safe set are shown in Figure 4.2.

Figure 4.2: Representation of the convex safe set and sampled safe set constructed using two
closed-loop trajectories.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 19

4.2.3 Local Sampled Safe Set

The sampled safe set SSj and the convex safe set CSj from the previous section are con-
structed using the successful closed-loop trajectories up to the jth iteration. Therefore, as
more iterations are performed, the number of data points used to construct these quanti-
ties increases. In this section, we introduce a local sampled safe set, which for each state
xjt ∈ SSj is constructed using a fixed amount of stored data. This property, as we will see
later on, will allow us to reduce the computational burden associated with the controller.

We define the local safe set around x ∈ SSj as the collection of the K-nearest neighbors
to x from the lth to the jth iteration, i.e.,

LSjl (x) =

j⋃
i=l

⋃
t∈Ki(x)

xit, (4.9)

where, for the jth trajectory, the set Kj(x) collects the time indices of the K-nearest neigh-
bors to the state x. Basically, Kj(x) = {tj,∗1 , . . . , tj,∗K } for

[tj,∗1 , . . . , tj,∗K ] = arg min
t

K∑
i=1

||xjti − x||
2
2

s.t. ti 6= tk, ∀i 6= k

ti ∈ {1, 2, . . .}, ∀i ∈ {1, . . . , K}.

4.3 Q-functions

This section introduces sampled, convex and local Q-functions, which approximates the value
function over the safe sets from the previous Section 4.2. These approximations are computed
simply evaluating the cost-to-go associated with the stored closed-loop data. Later on, we
will show that these Q-functions allow us to guarantee iterative performance improvement
for the closed-loop system, when used as terminal cost in a predictive control schema.

4.3.1 Sampled Q-function

At time t of the jth iteration, the cost-to-go J jt→∞ associated with the closed-loop trajectory
(4.3b) and input sequence (4.3a) is defined as the summation of the running cost, i.e.,

J jt→∞(xjt) =
∞∑
k=t

h(xjk, u
j
k), (4.10)

where h(·, ·) is the stage cost of the problem (4.5). In the above equation (4.10), xjk and ujk
are the realized state and input at the jth iteration, as defined in (4.3). The above cost-to-go



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 20

is used to the define the Q-function Qj(·) over the sample safe set SSj,

Qj(x) =


min
xit∈SSj
xit=x

J it→∞(xit), if x ∈ SSj

+∞, if x /∈ SSj
. (4.11)

Remark 4 The function Qj(·) in (4.11) is a control Lyapunov function which assigns to
every point in the sampled safe set SSj the minimum cost-to-go along the trajectories in
SSj i.e.,

∀x ∈ SSj, Qj(x) = J i
∗

t∗→∞(x) =
∞∑
k=t∗

h(xi
∗

k , u
i∗

k ), (4.12)

where xi
∗
t∗ is function of x and it is the minimizer in (4.11):

xi
∗

t∗ = argmin
xit∈SSj
xit=x

J it→∞(xit), for x ∈ SSj.
(4.13)

4.3.2 Convex Q-function

In this section, we define the convex Q-function, which interpolates the cost-to-go over the
convex safe set CSj. In particular, we define the convex Q-function Qj

c(·) as the barycentric
interpolation of Qj(·) from (4.11),

Qj
c(x) = min

λit≥0

j∑
i=0

∞∑
t=0

λitJ
i
t→∞(xit)

s.t.

j∑
i=0

∞∑
t=0

λitx
i
t = x,

j∑
i=0

∞∑
t=0

λit = 1,

(4.14)

where the cost-to-go J it→∞(·) is defined in (4.10). Notice that that Problem (4.14) is a
parametric LP and therefore Qj

c(·) is a continuous piecewise affine convex function [10,
63]. In particular, convex Q-function is a piece-wise affine interpolation of the cost-to-go
associated with the states stored in SSj, as shown in Figure 4.3. Finally, we underlined that
for linear systems subject to convex state and input constraints, the convex Q-function is a
control Lyapunov function and it will allow us to guarantee iterative closed-loop performance
improvements.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 21

Figure 4.3: The figure shows the Q-function and the convex Q-function constructed using one
stored trajectory. We notice that the Q-function is defined over a set of discrete points, and
the convex Q-function is defined over a convex domain. In particular, the convex Q-function
a piece-wise affine interpolation of the Q-function.

4.3.3 Local Q-function

The number of data points used to construct the Q-function and the convex Q-function from
the previous sections increases as more iteration are performed. In this section, we introduce
a local approximation to the value function, which for each xjt ∈ SSj is constructed using
a fixed number of data points. In particulate, we define the local Q-function over the
local sampled safe set LSj(x̄) around x̄ ∈ SSj as the minimum cost-to-go over the stored
trajectories, i.e.,

Qj
l (x, x̄) =


min

xit∈LSj(x̄)

xit=x

J it→∞(xit), if x ∈ LSj(x̄)

+∞, if x /∈ LSj(x̄)

, (4.15)

where the cost-to-go J it→∞(·) is defined in (4.10). The above local Q-function assigns to
every state of the local sampled safe set LSj(x̄) the minimum cost-to-go along the stored
trajectories. Notice that the above local Q-function evaluated along a closed-loop trajectory
is a control Lyapunov function. Later on, we will use this property to compute a state
zt ∈ SSj which guarantees that the function Qj

l (·, zt) is a control Lyapunov function for the
closed-loop system. In particular, we will compute zt exploiting the planned trajectory at
time t− 1.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 22

4.4 Control Design

Finally, we introduce the iterative control design procedure. At each iteration j, we store
the closed-loop trajectory and we construct the safe set and Q-function, as described in
Sections 4.2-4.3. Afterwards, we exploit these quantities to design the Learning Model
Predictive Controller (LMPC) for the next j + 1 iteration of the control task.

4.4.1 LMPC Policy

At time t of iteration j, the LMPC policy solves the following finite time constrained optimal
control problem

J LMPC,j
t→t+N(xjt) = min

ut|t,...,ut+N−1|t

[ t+N−1∑
k=t

h(xk|t, uk|t) +Qj−1(xt+N |t)

]
(4.16a)

s.t. xk+1|t = f(xk|t, uk|t),∀k ∈ {t, . . . , t+N − 1} (4.16b)

xk|t ∈ X , uk|t ∈ U ,∀k ∈ {t, . . . , t+N − 1} (4.16c)

xt+N |t ∈ SSj−1, (4.16d)

xt|t = xjt , (4.16e)

where (4.16b) and (4.16d) represent the system dynamics and initial condition, respectively.
The state and input constraints are given by (4.16c). Constraint (4.16d) forces the terminal
state into the set SSj−1 defined in equation (4.6).
Let

u∗,jt:t+N |t = [u∗,jt|t , . . . , u
∗,j
t+N−1|t]

x∗,jt:t+N |t = [x∗,jt|t , . . . , x
∗,j
t+N |t]

(4.17)

be the optimal solution of (4.16) at time t of the jth iteration and J LMPC,j
t→t+N(xjt) the corre-

sponding optimal cost. Then, at time t of the iteration j, the first element of u∗,jt:t+N |t is

applied to the system (4.1)
ujt = πLMPC,j(xjt) = u∗,jt|t . (4.18)

The finite time optimal control problem (4.16) is solved at time t+1, based on the new state
xt+1|t+1 = xjt+1, yielding a moving or receding horizon control strategy.

Assumption 1 At iteration j = 1 we assume that SSj−1 = SS0 is a non-empty set and
that the trajectory x0 ∈ SS0 is feasible and convergent to xF .

Assumption 1 is not restrictive in practice for a number of applications. For instance,
in autonomous racing one can always run a path following controller at very low speed to
obtain a feasible state and input sequence.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 23

(a) LMPC predicted trajectory at time t = 0. (b) LMPC predicted trajectory at time t = 1.

Figure 4.4: The blue dots represent the samples safe set from 4.6 and the green stars represent
the planned open-loop trajectory given by the optimal solution to problem (4.17). Finally,
the red squares represent the closed-loop trajectory. Notice that at time t = 0 the state of
the system equals the starting states xS, and at time t = 1 the state of the system equals
the first predicted state at the previous time step t = 0.

Figures 4.4a-4.4b illustrate how the LMPC works. In particular, we reported the safe
set, the planned open-loop trajectory and the closed-loop trajectory for two consecutive time
instants. Notice that at time t = 0 of iteration j = 2, the predicted trajectory starts from xS
and lands on the stored state x1

2 ∈ SS1. As shown in Figure 4.4a the predicted trajectory is
not required to lay into the safe set and the controller is free to explore the state space. As a
results, at time t = 1 the closed-loop trajectory deviates from the safe set. Figure 4.4b shows
that the state of the system x2

1 does belong to the safe set, however the controller still plans
an open-loop trajectory which steers the system back to a visited state. This strategy allows
the LMPC to safely explore the state space in order to iteratively improve the closed-loop
performance, as we will see in Section 4.5.

4.4.2 LMPC Relaxations

The terminal constraint set in (4.16d) is the sampled safe set SSj. Therefore, Problem (4.16)
is a Mixed Integer (MI) optimization problem and computing the control action given by
the LMPC policy is expensive. In this section, we show two strategies which may be used
to reduce the computational burden.

4.4.2.1 Convex LMPC

The computational cost may be reduced convexifying the terminal cost and constraint in
Problem (4.16). In particular, we use the convex safe set (4.8) as terminal constraint and



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 24

the convex Q-function (4.14) as terminal cost. For linear systems subject to convex state
and input constraints, we solve the following convex optimization problem

J LMPC,j
c,t→t+N(xjt) = min

uj
t|t,...,u

j
t+N−1|t

λ00,...,λ
j−1
0 ,...

[ t+N−1∑
k=t

h(xk|t, uk|t) +

j−1∑
i=0

∞∑
k=0

λjkJ
i
k→∞(xik)

]
(4.19a)

s.t. xjk+1|t = f(xk|t, uk|t),∀k ∈ {t, . . . , t+N − 1} (4.19b)

xk|t ∈ X , uk|t ∈ U ,∀k ∈ {t, . . . , t+N − 1} (4.19c)

λik ≥ 0,∀i ∈ {0, 1, . . . , }, k ∈ {0, 1, . . . , } (4.19d)

xt+N |t =

j−1∑
i=0

∞∑
k=0

λikx
i
k,

j−1∑
i=0

∞∑
k=0

λik = 1, (4.19e)

xt|t = xjt . (4.19f)

Let [uj,∗t|t , . . . , u
j,∗
t+N−1|t] be the optimal input sequence to the above problem. Then, the convex

LMPC policy applies to the system (4.1) the first element of the optimizer vector

ujt = πLMPC,j
c (xjt) = uj,∗t|t . (4.20)

Later on we will show that for linear system, convex cost and constraints, this strategy guar-
antees recursive constraint satisfaction and non-increasing closed-loop cost at each iteration,
as shown in the Section 4.7.4 of the Appendix.

4.4.2.2 Local LMPC

The computational burden associated with the LMPC (4.16) and (4.18) may be reduced
using the local convex safe set LSj(·) as terminal constraint and the local Q-function Qj

l (·, ·)
as a terminal cost function. In particular, we define the following finite time optimal control
problem

J LMPC,j
l,t→t+N(xjt , z

j
t ) = min

ut|t,...,ut+N−1|t

[ t+N−1∑
k=t

h(xk|t, uk|t) +Qj−1
l (xt+N |t, z

j
t )

]
(4.21a)

s.t. xk+1|t = f(xk|t, uk|t),∀k ∈ {t, . . . , t+N − 1} (4.21b)

xk|t ∈ X , uk|t ∈ U ,∀k ∈ {t, . . . , t+N − 1} (4.21c)

xt+N |t ∈ LSj−1(zjt ), (4.21d)

xt|t = xjt , (4.21e)

where, for xi
∗
t∗ = argminx∈LSj(zjt )Q

j−1
l (x, zjt ), the the vector

zjt+1 =

{
xj−1
N If t+ 1 = 0

xi
∗
t∗+1 Otherwise

(4.22)



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 25

represents a candidate terminal state for the planned trajectory in (4.21) at time t+ 1. Let
[uj,∗t|t , . . . , u

j,∗
t+N−1|t] be the optimal input sequence to (4.21). Then, the local LMPC policy

applies to the system (4.1) the first element of the optimizer vector

ujt = πLMPC,j
l (xjt) = uj,∗t|t . (4.23)

Notice that the local safe set is a set of discrete points and (4.21) is a MI problem.
However, the number of integer variables does not grow as more iteration of the control
task are performed. In the result Section 4.6.2, we will show that this strategy allows us
to reduces the computation burden of the LMPC. Furthermore, it possible to show the this
strategy preserves the LMPC properties for nonlinear system, non-convex cost and non-
convex constraints, as shown in the Section 4.7.5 of the Appendix.

4.5 Properties

In the this section, we show that the LMPC (4.16) and (4.18) in closed-loop with system (4.1)
guarantees recursively feasibility, stability and non-increasing closed-loop cost at each iter-
ation. We focus our discuss on the LMPC from Section 4.4.1. However, similar arguments
can be used to prove similar properties for the LMPC relaxations presented in Section 4.4.2.
For more details we refer to Sections 4.7.4 and 4.7.5 of the Appendix.

4.5.1 Recursive feasibility and stability

As discussed in Section 4.2, for every point in the set SSj, there exists a feasible control
sequence that can drive the system to the terminal point xF . The properties of SSj and
Qj(·) are used in the next proof to show recursive feasibility and asymptotic stability of the
equilibrium state xF .

Theorem 1 Consider system (4.1) controlled by the LMPC (4.16) and (4.18). Let SSj be
the sampled safe set at iteration j as defined in (4.6). Let Assumption 1 hold, then the LMPC
(4.16) and (4.18) is feasible for all t ≥ 0 and iteration j ≥ 1. Moreover, the equilibrium
point xF is asymptotically stable for the closed loop system (4.1), (4.16) and (4.18) at every
iteration j ≥ 1.

Proof The proof can be found in Section 4.7.1 of the Appendix.

4.5.2 Performance improvement and convergence properties

In this section we show two results. First, the jth iteration cost J j0→∞(·) does not increase
as j increases. Second, if the closed-loop system converges to a steady state behavior in
the iteration domain, then the steady state trajectory is a local optimal solution to the
infinite horizon control problem (4.5). In the following, we use the fact the Problem (4.16)
is time-invariant at each iteration j and we replace J LMPC,j

t→t+N(·) with J LMPC,j
0→N (·).



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 26

Theorem 2 Consider system (4.1) in closed loop with the LMPC controller (4.16) and
(4.18). Let SSj be the sampled safe set at the jth iteration as defined in (4.6). Let As-
sumption 1 hold, then the iteration cost J j0→∞(·) =

∑∞
t=0 h(xjt , u

j
t) does not increase with the

iteration index j.

Proof The proof can be found in Section 4.7.2 of the Appendix.

Next, we assume that the LMPC (4.16) and (4.18) converges to a steady state trajectory
x∞0 , x

∞
1 , . . .. We try to answer the following question: “What is the link between such steady

state trajectory and an optimal solution to (4.5)?”. We introduce the following finite time
optimal control problem closely linked to Problem (4.5),

J̃∗t→t+T (xt) = min
u0,...,uT−1

T−1∑
k=0

h(xk, uk) +Q∞(xT ) (4.24a)

s.t. xk+1 = f(xk, uk),∀k ∈ {0, . . . , T − 1} (4.24b)

xk ∈ X , uk ∈ U ,∀k ∈ {0, . . . , T − 1} (4.24c)

xT = x∞t+T , (4.24d)

x0 = xt. (4.24e)

where the running cost in (4.24a), the dynamic constraint in (4.24b), the state and input
constraints in (4.24c) are the same as in (4.5).

Remark 5 Compare Problem (4.24) with Problem (4.16). Problem (4.24) uses an horizon
T , possibly longer than the horizon N of Problem (4.16). Moreover, the terminal set of
Problem (4.24) is a subset of the terminal set of Problem (4.16). Therefore, for T = N ,
every optimal solution to (4.16) which is feasible Problem (4.24) is also optimal.

For the sake of simplicity we assume that Problem (4.5) is strictly convex and discuss
the non-convex case in remark 6.

Assumption 2 Problem (4.5) is strictly convex.

Theorem 3 Consider system (4.1) in closed loop with the LMPC controller (4.16) and
(4.18) with N > 1. Let SSj be the sampled safe set at the jth iteration as defined in (4.6).
Let Assumptions 1-2 hold and assume that the LMPC controller (4.16) and (4.18) converges
to the steady state input u∞ = limj→∞ uj and the steady state trajectory x∞ = limj→∞ xj, for
iteration j →∞. Denote Int(S) as the interior of the set S, and recall the definition of ones-
step predecessor Pre(·) and successor Succ(·) sets from Chapter 2. If x∞k ∈ Int(Pre(x∞k+1))
and x∞k+1 ∈ Int(Succ(x∞k )) for all k ≥ 0, then (x∞t:t+T ,u

∞
t:t+T ) is the optimizer of the finite

horizon optimal control problem (4.24) with initial condition xt = x∞t for all t ≥ 0 and for
all T > 0.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 27

Proof The proof to the above Theorem can be found in Section 4.7.3 of the Appendix.

Remark 6 When problem (4.5) is non-convex, only local properties can be shown. In par-
ticular if one assumes that all local optimal solutions of (4.5) and (4.16) are strict, then the
proof of Theorem 3 could be modified to show local optimality of (x∞0:T ,u

∞
0:T ) for the finite

horizon optimal control problem J̃∗0→T (xS) for all T > 0.

4.6 Examples

In this section, we test the proposed LMPC strategies on linear and nonlinear problems.
First, we use the convex LMPC from Section 4.4.2.1 to solve the constrained linear quadratic
regulator problem. Afterwards, we solve a minimum time nonlinear obstacle avoidance
problem using the local LMPC from Section 4.4.2.2. In all example, the controller was
able to iteratively improve the closed-loop performance while satisfying state and input
constraints. All python code is available online2.

4.6.1 Constrained Linear Quadratic Regulator

In this section, we test the proposed LMPC on the following infinite horizon constrained
linear quadratic regulator (CLQR)

J∗0→∞(xS) = min
u0,u1,...

∞∑
t=0

[
||xt||22 + ||ut||22

]
(4.25a)

s.t. xt+1 =

[
1 1
0 1

]
xt +

[
0
1

]
ut, ∀t ∈ {0, 1, . . .} (4.25b)[

−15
−15

]
≤ xt ≤

[
15
15

]
,∀t ∈ {0, 1, . . .} (4.25c)

− 5 ≤ ut ≤ 5,∀t ∈ {0, 1, . . .}, (4.25d)

x0 = xS = [−15 1]T . (4.25e)

Firstly, we compute a feasible solution to (4.25) using a suboptimal controller. This feasi-
ble trajectory is used to initialize the convex LMPC (4.19) and (4.20), which is implemented
in CVXPY [64] with N = 3. At each jth iteration, the convex safe set and convex Q-function
are constructed using the stored data up to iteration j − 1. Finally, each jth iteration has
an unknown fixed-time duration t̃j = min

{
t ∈ Z0+ : ||xjt ||22 ≤ 10−8

}
.

Figure 4.5 shows the sampled safe set, the optimal trajectory to (4.25) and the closed-
loop trajectory at iteration j = {1, 2, 4, 20}. We notice that the LMPC deviates from the

2All code is available at https://github.com/urosolia/LMPC, the first example in the folder Lin-
earLMPC and the second one in the folder Non LinearLMPC/DubinsObstacleAvoidance SampledSafeSet
.

https://github.com/urosolia/LMPC
https://github.com/urosolia/LMPC/tree/master/LinearLMPC
https://github.com/urosolia/LMPC/tree/master/LinearLMPC
https://github.com/urosolia/LMPC/tree/master/NonlinearLMPC/DubinsObstacleAvoidance_SampledSafeSet


CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 28

(a) LMPC trajectory at iteration 1. (b) LMPC trajectory at iteration 2.

(c) LMPC trajectory at iteration 4. (d) LMPC trajectory at iteration 20.

Figure 4.5: Sampled safe set, optimal trajectory to (4.25) and closed-loop trajectory at
iteration j = {1, 2, 4, 20}. We notice that the LMPC iteratively improves the performance
of the closed-loop system, until it converges to the optimal closed-loop behavior.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 29

first feasible trajectory used to construct the safe set in Figure 4.5a. At the first iteration,
the closed-loop trajectory shown in Figure 4.5a is far from the optimal one. However, as
more iteration are performed, the LMPC closed-loop trajectory gets closer to the optimal
one (Fig. 4.5b and Fig. 4.5c) until the two trajectories overlap, as shown in Figure 4.5b.
Finally, Figure 4.6 shows the iteration cost which is non-increasing at each iteration, until it
converged to a steady-state value. We underline that the closed-loop cost converged to the
optimal one within a 10−8% tolerance. As a result the closed-loop trajectory associates with
the LMPC overlaps with the optimal solution to the CLQR (4.25), as shown in Figure 4.5d.

Figure 4.6: Evolution of the iteration cost through the iterations.

4.6.2 Minimum Time Dubins Car

In this section, we test the proposed LMPC on the time optimal dubins car problem [65] in
discrete time. The controller’s goal is to steer the system from the starting point xS to the
unforced equilibrium point xF in minimum time, while avoiding an obstacle. The minimum
time optimal control problem is formulated as the following infinite time optimal control



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 30

problem

J∗0→∞(xS) = min
θ0,θ1,...
a0,a1,...

∞∑
k=0

1xF (xt) (4.26a)

s.t. xt =

zt+1

yt+1

vt+1

 =

ztyt
vt

+

vtcos(θt)vtsin(θt)
at

 , ∀t ∈ {0, 1, . . .} (4.26b)

(zt − zobs)2

a2
e

+
(yt − yobs)2

b2
e

≥ 1,∀t ∈ {0, 1, . . .} (4.26c)

s ≤ at ≤ s,∀t ∈ {0, 1, . . .} (4.26d)

x0 = xS = [0 0 0]T , (4.26e)

where the indicator function in (4.26a) is defined as

1xF (x) =

{
1, if x 6= xF

0, if xk = xF
. (4.27)

In Equation (4.26d), s = 1 is the known acceleration saturation limit which simulates the
behavior of the friction circle [66, 67]. Equations (4.26b)-(4.26e) represent the dynamic
constraint and the initial conditions, respectively. The state vector xt = [zt, yt, vt] collects
the car’s position on the Z − Y plane and the velocity, respectively. The inputs are the
heading angle θt and the acceleration command at. Finally, (4.26c) represents the obstacle
constraint, enforcing the system trajectory to lay outside the ellipse centered at (zobs,yobs).

Table 4.1: Time steps to complete the task at each jth iteration

Iteration j 0 1 2 3 4 5 6 7 8 9 10
Iteration Cost 39 19 17 16 16 16 16 16 16 16 16

We implemented the local LMPC (4.21) and (4.23) with N = 6, the running cost
h(xt, ut) = 1xF (xt) and constraints (4.26b)-(4.26c). We set xF = [54, 0, 0]T , ae = 8 and
be = 6. At the 0-th iteration, we computed a feasible trajectory that steers system (4.26)
from x0 to xF using a brute force algorithm. For efficient techniques to compute collision-free
trajectories in the presence of obstacle we refer to [68, 69, 70]. This feasible trajectory is used
to construct the local sampled safe set LS0(·) and the terminal cost Q0

l (·) using K = 10 near-
est neighbors from the last 2 trajectories (i.e. l = j − 1 in (4.9)). Therefore, Problem (4.21)
is solved computing at most 20 nonlinear optimization problems. We coded the algorithm
from [62, Section 5.A.1)] and we used IPOPT [71] to solve the nonlinear programs.

We run the LMPC (4.21) and (4.18) for 10 iterations. Table 4.1 shows that the cost
is decreasing until it converges to a steady state value after 4 iterations. The closed-loop



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 31

Figure 4.7: Comparison between the first feasible trajectory x0 and the steady state trajec-
tory x10 at the 10th iteration.

Figure 4.8: The acceleration and steering inputs associated with the closed-loop trajectory
x10 at the 10th iteration.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 32

Figure 4.9: The velocity profile of the closed-loop trajectory x10 at the 10th iteration.

trajectory and the associated input sequence at the 10th iteration are reported in Figures 4.7-
4.9. We notice that the acceleration input is close to saturation, as we would expect from a
local optimal solution to the minimum time Problem (4.26). Similarly to a bang-bang [72]
controller, the local LMPC (4.21) and (4.23) first accelerates until the dubins car reaches
the midpoint between the initial and final position. Afterwards, the controller decelerates
to reach the xF with zeros velocity, as shown in Figure 4.9. Finally, we underline that in
discrete time the minimum time cost is given by the number of time steps needed to reach
the terminal point, therefore it is not surprising that the acceleration is not saturated all time
steps. Indeed an acceleration profile similar to the one shown in Figure 4.8 that saturates
the acceleration at all time steps would lead to a trajectory with the same associated cost.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 33

4.7 Appendix

4.7.1 Proof of Theorem 1

The proof follows from standard MPC arguments.
By assumption SS0 is non empty. From (4.6) we have that SS0 ⊆ SSj−1 ∀j ≥ 1, and
consequently SSj−1 is a non empty set. In particular, there exists a feasible trajectory
x0 ∈ SS0 ⊆ SSj−1. From (4.4) we know that xj0 = xS ∀j ≥ 0. At time t = 0 of the jth
iteration the N steps trajectory

x0
0:N = [x0

0, x
0
1, ..., x

0
N ] ∈ SSj−1, (4.28)

and the related input sequence,
[u0

0, u
0
1, ..., u

0
N−1], (4.29)

satisfy input and state constrains (4.16b)-(4.16e). Therefore (4.28)-(4.29) is a feasible solu-
tion to the LMPC (4.16) and (4.18) at t = 0 of the jth iteration.
Assume that at time t of the jth iteration the LMPC (4.16) and (4.18) is feasible and let
x∗,jt:t+N |t and u∗,jt:t+N |t be the optimal trajectory and input sequence, as defined in (4.17). From

(4.16b) and (4.18) the realized state and input at time t of the jth iteration are given by

xjt = x∗,jt|t ,

ujt = u∗,jt|t .
(4.30)

The terminal constraint (4.16d) enforces x∗,jt+N |t ∈ SS
j−1 and, from (4.12),

Qj−1(x∗,jt+N |t) = J i
∗

t∗→∞(x∗,jt+N |t) =
∞∑
k=t∗

h(xi
∗

k , u
i∗

k ). (4.31)

Note that xi
∗
t∗+1 = f(xi

∗
t∗ , u

i∗
t∗) and by the definition (4.13) xi

∗
t∗ = x∗,jt+N |t. Since the state update

in (4.1) and (4.16b) are assumed identical we have that

xjt+1 = x∗,jt+1|t. (4.32)

At time t+ 1 of the jth iteration the input sequence

[u∗,jt+1|t, u
∗,j
t+2|t, ..., u

∗,j
t+N−1|t, u

i∗

t∗ ], (4.33)

and the related feasible state trajectory

[x∗,jt+1|t, x
∗,j
t+2|t, ..., x

∗,j
t+N−1|t, x

i∗

t∗ , x
i∗

t∗+1] (4.34)

satisfy input and state constrains (4.16b)-(4.16e). Therefore, (4.33)-(4.34) is a feasible solu-
tion for the LMPC (4.16) and (4.18) at time t+ 1.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 34

We showed that at the jth iteration, ∀j ≥ 1 , (i): the LMPC is feasible at time t = 0 and
(ii): if the LMPC is feasible at time t, then the LMPC is feasible at time t + 1. Thus, we
conclude by induction that the LMPC in (4.16) and (4.18) is feasible ∀j ≥ 1 and t ≥ 0.

Next we use the fact the Problem (4.16) is time-invariant at each iteration j and we
replace J LMPC,j

t→t+N(·) with J LMPC,j
0→N (·). In order to show the asymptotic stability of xF we have to

show that the optimal cost, J LMPC,j
0→N (·), is a Lyapunov function for the equilibrium point xF of

the closed loop system (4.1) and (4.18) [15]. Continuity of J LMPC,j
0→N (·) can be shown as in [73].

From (4.1), J LMPC,j
0→N (x) � 0 ∀ x ∈ Rn \ {xF} and J LMPC,j

0→N (xF ) = 0. Thus, we need to show that
J LMPC,j

0→N (·) is decreasing along the closed loop trajectory.
From (4.32) we have x∗,jt+1|t = xjt+1, which implies that

J LMPC,j
0→N (x∗t+1|t) = J LMPC,j

0→N (xjt+1). (4.35)

Given the optimal input sequence and the related optimal trajectory in (4.17), the optimal
cost is given by

J LMPC,j
0→N (xjt) = min

ut|t,...,ut+N−1|t

[N−1∑
k=0

h(xk|t, uk|t) +Qj−1(xN |t)

]
=

= h(x∗,jt|t , u
∗,j
t|t ) +

N−1∑
k=1

h(x∗,jt+k|t, u
∗,j
t+k|t) + J i

∗

t∗→∞(x∗,jt+N |t) =

= h(x∗,jt|t , u
∗,j
t|t ) +

N−1∑
k=1

h(x∗,jt+k|t, u
∗,j
t+k|t) +

∞∑
k=t∗

h(xi
∗

k , u
i∗

k ) =

= h(x∗,jt|t , u
∗,j
t|t ) +

N−1∑
k=1

h(x∗,jt+k|t, u
∗,j
t+k|t) + h(xi

∗

t∗ , u
i∗

t∗) +Qj−1(xi
∗

t∗+1) ≥

≥ h(x∗,jt|t , u
∗,j
t|t ) + J LMPC,j

0→N (x∗,jt+1|t),

(4.36)

where xi
∗
t∗ is defined in (4.13).

Finally, from equations (4.18), (4.30) and (4.35)-(4.36) we conclude that the optimal cost
is a decreasing Lyapunov function along the closed loop trajectory,

J LMPC,j
0→N (xjt+1)− J LMPC,j

0→N (xjt) ≤ −h(xjt , u
j
t) < 0,∀ xjt ∈ Rn \ {xF}, ∀ ujt ∈ Rm \ {0} (4.37)

Equation (4.37), the positive definitiveness of h(·) and the continuity of J LMPC,j
0→N (·) imply that

xF is asymptotically stable. �

4.7.2 Proof of Theorem 2

First, we find a lower bound on the jth iteration cost J j0→∞(·), ∀ j > 0. Consider the realized
state and input sequence (4.3) at the jth iteration, which collects the first element of the



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 35

optimal state and input sequence to the LMPC (4.16) and (4.18) at time t, ∀t ≥ 0, as shown
in (4.30). By the definition of the iteration cost in (4.10), we have

J j−1
0→∞(xS) =

∞∑
t=0

h(xj−1
t , uj−1

t ) =

=
N−1∑
t=0

h(xj−1
t , uj−1

t ) +
∞∑
t=N

h(xj−1
t , uj−1

t ) ≥

≥
N−1∑
t=0

h(xj−1
t , uj−1

t ) +Qj−1(xj−1
N ) ≥

≥ min
u0,...,uN−1

[
N−1∑
k=0

h(xk, uk) +Qj−1(xN)

]
= J LMPC,j

0→N (xj0).

(4.38)

Then we notice that, at the jth iteration, the optimal cost of the LMPC (4.16) and (4.18)
at t = 0, J LMPC,j

0→N (xj0), can be upper bounded along the realized trajectory (4.3) using (4.37)

J LMPC,j
0→N (xj0) ≥ h(xj0, u

j
0) + J LMPC,j

0→N (xj1) ≥

≥ h(xj0, u
j
0) + h(xj1, u

j
1) + J LMPC,j

0→N (xj2) ≥

≥ lim
t→∞

[
t−1∑
k=0

h(xjk, u
j
k) + J LMPC,j

0→N (xjt)

]
.

(4.39)

From Theorem 1 xF is asymptotically stable for the closed loop system (4.1) and (??) (i.e.
limt→∞ x

j
t = xF ), thus by continuity of h(·, ·)

lim
t→∞

J LMPC,j
0→N (xt) = J LMPC,j

0→N (xF ) = 0. (4.40)

From equations (4.39)-(4.40)

J LMPC,j
0→N (xj0) ≥

∞∑
k=0

h(xjk, u
j
k) = J j0→∞(xS), (4.41)

and finally from equations (4.38) and (4.41) we conclude that

J j−1
0→∞(xS) ≥ J LMPC,j

0→N (xj0) ≥ J j0→∞(xS), (4.42)

thus the iteration cost is non-increasing. �



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 36

4.7.3 Proof of Theorem 3

By assumption, system (4.1) in closed loop with the LMPC controller (4.16) and (4.18)
converges to a steady state trajectory x∞. This implies that both the sampled safe set SSj

and the terminal cost Qj(·) converge at steady state, i.e, for j →∞, xj → x∞, SSj → SS∞

and Qj(·)→ Q∞(·). From (4.37) we have that

J LMPC,∞
0→N (x∞t ) ≥ h(x∞t , u

∞
t ) + J LMPC,∞

0→N (x∞t+1) ≥
≥ h(x∞t , u

∞
t ) + h(x∞t+1, u

∞
t+1) + J LMPC,∞

0→N (x∞t+2) ≥

≥

[
T−1∑
k=0

h(x∞t+k, u
∞
t+k) + sum∞k=Th(x∞t+k, u

∞
t+k)

]
∀ T > 0.

(4.43)

From definition (4.6), we have that x∞ ∈ SS∞. In equation (4.43), pick T = N and
from (4.43) we have:

J LMPC,∞
0→N (x∞t ) ≥

N−1∑
k=0

h(x∞t+k, u
∞
t+k) +Q∞(x∞t+N). (4.44)

From (4.44) we conclude that the cost associated with the feasible state and input trajectory

x∞t:t+N = [x∞t , x
∞
t+1, ..., x

∞
t+N ]

u∞t:t+N = [u∞t , u
∞
t+1, ..., u

∞
t+N−1]

(4.45)

is a lower bound of the optimal cost J LMPC,∞
0→N (x∞t ). Therefore, (x∞t:t+N , u∞t:t+N) is an optimal

solution to the LMPC (4.16)-(4.18) for any t and for j →∞.
From remark 5 and from the above results, we have that (x∞t:t+N ,u

∞
t:t+N) is an optimal

solution to the optimal control problem defined in (4.24) with initial condition xt = x∞t and
T = N . The corresponding optimal cost is J̃∗t→t+N(x∞t ).

Next, we prove that x∞t:t+N+1 and u∞t:t+N+1 is the optimal solution to the finite time optimal
control problem (4.24) with initial condition xt = x∞t and T = N + 1. The corresponding
optimal cost is J̃∗t→t+N+1(x∞t ). From time-invariance we focus on the case t = 0 and refer to
Problem (4.24) with initial condition x0 = x∞0 and T = N + 1 as J∗0→N+1(x∞0 ).
We proceed by contradiction and assume that the optimal solution to problem J∗0→N+1(x∞0 )
is (x̃∞0:N+1, ũ∞0:N+1) different from (x∞0:N+1,u

∞
0:N+1).

Define N feasible trajectories, for α ∈ (0, 1),

x̂i,∞0:N+1 = [x∞0 , . . . , x
∞
i−1, αx̃

∞
i + (1− α)x∞i , x

∞
i+1, . . . , x

∞
N+1] (4.46)

with i = [1, . . . , N ]. By assumption x∞k ∈ Int(Pre(x∞k+1)) and x∞k+1 ∈ Int(Succ(x∞k )) for all

k ≥ 0. This implies that there exists an α > 0 such that the trajectory x̂i,∞0:N+1 and its related

input sequence ûi,∞0:N+1 are feasible for problem J∗0→N+1(x∞0 ).



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 37

For easier readability we introduce the function J0→N+1(·) which evaluates the cost of
the N + 1-steps trajectory:

J0→N+1(x∞0:N+1) =
N∑
k=0

h(x∞k , u
∞
k ) +Q(x∞N+1). (4.47)

We notice that, by optimality of (x∞t:t+N ,u
∞
t:t+N) for all t ≥ 0, we have

J0→N(x̂i,∞0:N) > J0→N(x∞0:N), ∀i ∈ {1, . . . , N − 1}, (4.48a)

J1→N+1(x̂i,∞1:N+1) > J1→N+1(x∞1:N+1), ∀i ∈ {2, . . . , N}. (4.48b)

From (4.48a) we have

N−1∑
k=0

h(x̂i,∞k , ûi,∞k ) +Q(x̂i,∞N ) >
N−1∑
k=0

h(x∞k , u
∞
k ) +Q(x∞N ) ∀i ∈ {1, . . . , N − 1}. (4.49)

Moreover, we know that x̂i,∞N = x∞N and ûi,∞N = u∞N ∀i ∈ {1, . . . , N − 1}, therefore by
definition of the terminal cost (4.11) and from (4.49) we have

N∑
k=0

h(x̂i,∞k , ûi,∞k ) +Q(x̂i,∞N+1) >
N∑
k=0

h(x∞k , u
∞
k ) +Q(x∞N+1) ∀i ∈ {1, . . . , N − 1}, (4.50)

which implies

J0→N+1(x̂i,∞0:N+1) > J0→N+1(x∞0:N+1), ∀i ∈ {1, . . . , N − 1}. (4.51)

Moreover, from the fact that x̂i,∞0 = x∞0 and ûi,∞0 = u∞0 , ∀i = {2, . . . , N} and from (4.48b)
we have

h(x̂i,∞0 , ûi,∞0 ) + J1→N+1(x̂i,∞1:N+1) > h(x∞0 , u
∞
0 ) + J1→N+1(x∞1:N+1), ∀i ∈ {2, . . . , N}. (4.52)

From (4.51) and (4.52) we conclude that

J0→N+1(x̂i,∞0:N+1) > J0→N+1(x∞0:N+1), ∀i ∈ {1, . . . , N}. (4.53)

Define the trajectory x̄∞0:N+1 as convex combination of x∞0:N+1 and the trajectories in
(4.46),

x̄∞0:N+1 =
N∑
i=1

1

N

(1

2
x̂i,∞0:N+1 +

1

2
x∞0:N+1

)
. (4.54)

From (4.46) we have that x̄∞0:N+1 can be expressed also as a convex combination of the optimal
trajectory x̃∞0:N+1 and x∞0:N+1,

x̄∞0:N+1 =
α

2N
x̃∞0:N+1 +

2N − α
2N

x∞0:N+1. (4.55)



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 38

Concluding from (4.54) and Assumption 2, we have that

J0→N+1(x∞0:N+1) < J0→N+1(x̄∞0:N+1) < J0→N+1(x̂k,∞0:N+1) (4.56)

where k = arg maxi∈[1,...,N ] J0→N+1(x̂i,∞0:N+1).
Furthermore, from (4.55) and Assumption 2, we have that

J0→N+1(x̃∞0 ) < J0→N+1(x̄∞0 ) < J0→N+1(x∞0:N+1). (4.57)

Finally, from (4.56) and (4.57) we have a contradiction and we conclude that (x∞0:N+1, u∞0:N+1)
is the optimal solution of the finite time optimal control problem (4.24) with initial condition
xt = x∞t and T = N + 1. The above procedure can be iterated for T = N + 2, T =
N + 3,. . . which proves the Theorem. �

4.7.4 Convex LMPC Properties

In this Section, the properties of CSj and Qj
c(·) are used to show recursive feasibility and

asymptotic stability of the equilibrium point xF .

4.7.4.1 Recursive Feasibility and Stability

We show that for deterministic liner system

xt+1 = Axt +But, (4.58)

the convex LMPC guarantees recursive constraint satisfaction and stability goal state xF for
the closed-loop system.

Theorem 4 Consider system (4.58) controlled by the LMPC controller (4.19) and (4.20).
Let CSj be the convex safe set at iteration j as defined in (4.8). Let Assumption 1 hold,
then the LMPC (4.19) and (4.20) is feasible ∀ t ∈ Z0+ and iteration j ≥ 1. Moreover, the
equilibrium point xF is asymptotically stable for the closed loop system (4.58) and (4.20) at
every iteration j ≥ 1.

Proof The proof follows from standard MPC arguments. By assumption CS0 is non empty.
From (4.8) we have that CS0 ⊆ CSj−1 ∀j ≥ 1, and consequently CSj−1 is a non empty
set. In particular, there exists a trajectory x0 ∈ CS0 ⊆ CSj−1. From (4.4) we know that
xj0 = xS ∀j ≥ 0. At time t = 0 of the j-th iteration the N steps trajectory

[x0
0, x

0
1, ..., x

0
N ] ∈ CSj−1, (4.59)

and the related input sequence,
[u0

0, u
0
1, ..., u

0
N−1], (4.60)



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 39

satisfy input and state constrains (4.19b)-(4.19f). Therefore (4.59)-(4.60) is a feasible solu-
tion to the LMPC (4.19) and (4.20) at t = 0 of the j-th iteration.
Assume that at time t of the j-th iteration the LMPC (4.19) and (4.20) is feasible and let
x∗,jt:t+N |t and u∗,jt:t+N |t be the optimal trajectory and input sequence. From (4.19b) and (4.20)
the realized state and input at time t of the j-th iteration are given by

xjt = x∗,jt|t ,

ujt = u∗,jt|t .
(4.61)

Moreover, the terminal constraint (4.19e) enforces x∗,jt+N |t ∈ CS
j−1 and, from (4.14),

x∗,jt+N |t =

j−1∑
k=0

∞∑
t=0

λ∗,kt xkt . (4.62)

We define

ū =

j−1∑
k=0

∞∑
t=0

λ∗,kt ukt , ∈ U , (4.63)

and

x̄ = Ax∗,jt+N |t +Bū =

j−1∑
k=0

∞∑
t=0

λ∗,kt

(
Axkt +Bukt

)
=

j−1∑
k=0

∞∑
t=0

λ∗,kt xkt+1 ∈ CSj−1. (4.64)

Since the state update in (4.58) and (4.19b) are assumed identical we have that

xjt+1 = x∗,jt+1|t. (4.65)

At time t+ 1 of the j-th iteration the input sequence and the related feasible state trajectory

[u∗,jt+1|t, u
∗,j
t+2|t, ..., u

∗,j
t+N−1|t, ū], (4.66a)

[x∗,jt+1|t, x
∗,j
t+2|t, ..., x

∗,j
t+N−1|t, x

∗,j
t+N |t, x̄] (4.66b)

satisfy input and state constrains (4.19b)-(4.19f). Therefore, (4.66) is a feasible solution for
the LMPC (4.19) and (4.20) at time t+ 1.
We showed that at the j-th iteration, ∀j ≥ 1 , (i): the LMPC is feasible at time t = 0 and
(ii): if the LMPC is feasible at time t, then the LMPC is feasible at time t + 1. Thus, we
conclude by induction that the LMPC in (4.19) and (4.20) is feasible ∀j ≥ 1 and t ∈ Z0+.

Next we use the fact the Problem (4.19) is time-invariant at each iteration j and we
replace J LMPC,j

c,t→t+N(·) with J LMPC,j
c,0→N(·). In order to show the asymptotic stability of xF we have

to show that the optimal cost, J LMPC,j
c,0→N(·), is a Lyapunov function for the equilibrium point xF

of the closed loop system (4.58) and (4.20) [15]. Continuity of J LMPC,j
c,0→N(·) can be shown as in

[73]. Moreover from (4.19a), J LMPC,j
c,0→N(x) � 0 ∀ x ∈ Rn \ {xF} and J LMPC,j

c,0→N(xF ) = 0. Thus, we



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 40

need to show that J LMPC,j
c,0→N(·) is decreasing along the closed loop trajectory.

From (4.65) we have x∗,jt+1|t = xjt+1, which implies that

J LMPC,j
c,0→N(x∗t+1|t) = J LMPC,j

c,0→N(xjt+1). (4.67)

Given the optimal input sequence and the related optimal trajectory and the definition of the
Qj−1
c (·) (4.14), the optimal cost is given by

J LMPC,j
c,0→N(xjt) = min

ut|t,...,ut+N−1|t

[N−1∑
k=0

h(xk|t, uk|t) +Qj−1
c (xN |t)

]
=

= h(x∗,jt|t , u
∗,j
t|t ) +

N−1∑
k=1

h(x∗,jt+k|t, u
∗,j
t+k|t) +Qj−1

c (x∗,jt+N |t) =

= h(x∗,jt|t , u
∗,j
t|t ) +

N−1∑
k=1

h(x∗,jt+k|t, u
∗,j
t+k|t) +

j−1∑
k=0

∞∑
t=0

λ∗,kt

∞∑
l=0

h(xkt+l, u
k
t+l).

(4.68)

We can further simplify the above expression using (4.14), (4.62)-(4.64) and the fact that
h(·, ·) is jointly convex in the arguments,

J LMPC,j
c,0→N(xjt) = h(x∗,jt|t , u

∗,j
t|t ) +

N−1∑
k=1

h(x∗,jt+k|t, u
∗,j
t+k|t) +

j−1∑
k=0

∞∑
t=0

λ∗,kt h(xkt , u
k
t )

+

j−1∑
k=0

∞∑
t=0

λ∗,kt

∞∑
l=1

h(xkt+l, u
k
t+l)

≥ h(x∗,jt|t , u
∗,j
t|t ) +

N−1∑
k=1

h(x∗,jt+k|t, u
∗,j
t+k|t) + h

( j−1∑
k=0

∞∑
t=0

λ∗,kt xkt ,

j−1∑
k=0

∞∑
t=0

λ∗,kt ukt

)
+

+

j−1∑
k=0

∞∑
t=0

λ∗,kt Jkt→∞(xkt+1)

≥ h(x∗,jt|t , u
∗,j
t|t ) +

N−1∑
k=1

h(x∗,jt+k|t, u
∗,j
t+k|t) + h(x∗,jt+N |t, ū) +Qj−1

c (x̄)

≥ h(x∗,jt|t , u
∗,j
t|t ) + J LMPC,j

c,0→N(x∗,jt+1|t).

(4.69)
Note that, in the above derivation, we used the fact that λ̄k0 = 0 and λ̄kt+1 = λ∗,kt , ∀k ∈
{0, j−1}, t ∈ Z0+ is a feasible solution to problem (8.13) and therefore

∑∞
t=0 λ

∗,k
t Jkt→∞(xkt+1)

is a upper bound for Qj−1
c (x̄). Finally, from equations (4.20), (4.61) and (4.67)-(4.69)

we conclude that the optimal cost is a decreasing Lyapunov function along the closed loop
trajectory,

J LMPC,j
c,0→N(xjt+1)− J LMPC,j

c,0→N(xjt) ≤ −h(xjt , u
j
t) < 0,∀ xjt ∈ Rn \ {xF} (4.70)



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 41

Equation (4.70), the positive definitiveness of h(·, ·) and the continuity of J LMPC,j
c,0→N(·) imply

that xF is asymptotically stable.

4.7.4.2 Performance Improvement and Convergence Properties

In this section we show two results. First, the jth iteration cost J j0→∞(·) does not increase
as j increases. Second, if the closed-loop system converges to a steady state behavior in
the iteration domain, then the steady state trajectory is a local optimal solution to the
infinite horizon control problem (4.5). In the following, we use the fact the Problem (4.19)
is time-invariant at each iteration j and we replace J LMPC,j

c,t→t+N(·) with J LMPC,j
c,0→N(·).

Theorem 5 Consider system (4.58) in closed loop with the LMPC controller (4.19) and
(4.20). Let CSj be the convex safe set at the j-th iteration as defined in (4.8). Let As-
sumption 1 hold, then the iteration cost J j0→∞(·) does not increase with the iteration index
j.

Proof Notice from the Follows from (4.69) that J LMPC,j
c,0→N(xjt) ≥ h(x∗,jt|t , u

∗,j
t|t ) + J LMPC,j

c,0→N(x∗,jt+1|t).
Therefore, the proof follows as in Theorem 2.

Theorem 6 Consider system (4.58) in closed loop with the LMPC controller (4.19) and
(4.20) with N > 1. Let CSj be the sampled safe set at the jth iteration as defined in (4.8).
Let Assumptions 1-2 hold and assume that the LMPC controller (4.19) and (4.20) converges
to the steady state input u∞ = limj→∞ uj and the steady state trajectory x∞ = limj→∞ xj, for
iteration j →∞. Denote Int(S) as the interior of the set S, and recall the definition of ones-
step predecessor Pre(·) and successor Succ(·) sets from Chapter 2. If x∞k ∈ Int(Pre(x∞k+1))
and x∞k+1 ∈ Int(Succ(x∞k )) for all k ≥ 0, then (x∞t:t+T ,u

∞
t:t+T ) is the optimizer of the finite

horizon optimal control problem (4.24) with initial condition xt = x∞t for all t ≥ 0 and for
all T > 0.

Proof The proof follows as in Theorem 3.

4.7.5 Local LMPC Properties

Finally, we describe the properties of the local LMPC policy (4.21) in closed-loop with
system (4.23). In particular, we show the local LMPC strategy guarantee recursive constraint
satisfaction, closed-loop stability and performance improvement.

Theorem 7 Consider system (4.1) controlled by the local LMPC (4.21) and (4.23). Let
LSj(zt) be the local sampled safe set at iteration j as defined in (4.9), and zt the vector
from (4.22). Let Assumption 1 hold, then the LMPC (4.21) and (4.23) is feasible for all
t ≥ 0 and iteration j ≥ 1. Moreover, the equilibrium point xF is asymptotically stable for
the closed loop system (4.1), (4.21) and (4.23) at every iteration j ≥ 1.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 42

Proof The proof follows from standard MPC arguments.
By definition xjN ∈ LS

0(zj0). Therefore, at time t = 0 of the jth iteration the N steps
trajectory

x0
0:N = [x0

0, x
0
1, ..., x

0
N ], (4.71)

and the related input sequence,
[u0

0, u
0
1, ..., u

0
N−1], (4.72)

satisfy input and state constrains (4.21b)-(4.21e). Therefore (4.71)-(4.72) is a feasible solu-
tion to the local LMPC (4.21) and (4.23) at t = 0 of the jth iteration.
Assume that at time t of the jth iteration the LMPC (4.21) and (4.23) is feasible and let
x∗,jt:t+N |t and u∗,jt:t+N |t be the optimal trajectory and input sequence. From (4.21b) and (4.23)
the realized state and input at time t of the jth iteration are given by

xjt = x∗,jt|t ,

ujt = u∗,jt|t .
(4.73)

The terminal constraint (4.21d) enforces x∗,jt+N |t ∈ LS
j−1(zjt ) and, from (4.9),

Qj−1
l (x∗,jt+N |t, zt) = J i

∗

t∗→∞(x∗,jt+N |t) =
∞∑
k=t∗

h(xi
∗

k , u
i∗

k ). (4.74)

Note that, by the definition (4.22), xi
∗
t∗+1 = f(xi

∗
t∗ , u

i∗
t∗) = zjt+1 and xi

∗
t∗ = x∗,jt+N |t. Since the

state update in (4.1) and (4.16b) are assumed identical we have that

xjt+1 = x∗,jt+1|t. (4.75)

At time t+ 1 of the jth iteration the input sequence

[u∗,jt+1|t, u
∗,j
t+2|t, ..., u

∗,j
t+N−1|t, u

i∗

t∗ ], (4.76)

and the related feasible state trajectory

[x∗,jt+1|t, x
∗,j
t+2|t, ..., x

∗,j
t+N−1|t, x

i∗

t∗ , x
i∗

t∗+1 ∈ LSj−1(zjt+1)] (4.77)

satisfy input and state constrains (4.21b)-(4.21e). Therefore, (4.76)-(4.77) is a feasible so-
lution for the LMPC (4.21) and (4.23) at time t+ 1.
We showed that at the jth iteration, ∀j ≥ 1 , (i): the local LMPC is feasible at time t = 0
and (ii): if the LMPC is feasible at time t, then the LMPC is feasible at time t + 1. Thus,
we conclude by induction that the local LMPC in (4.21) and (4.23) is feasible ∀j ≥ 1 and
t ≥ 0.

The stability of the closed-loop system can be shown as in Theorem 9. In particular, we
can exploit feasibility of (4.76)-(4.77) and the definition (4.9) to show that the local LMPC
cost J LMPC,j

l,t→t+N(·) is a control Lyapunov function for the closed-loop trajectory.



CHAPTER 4. LMPC FOR DETERMINISTIC SYSTEMS 43

Theorem 8 Consider system (4.1) in closed loop with the LMPC controller (4.21) and
(4.23). Let LSj(zt) be the local sampled safe set at iteration j as defined in (4.9), and zt the
vector from (4.22). Let Assumption 1 hold, then the iteration cost J j0→∞(·) =

∑∞
t=0 h(xjt , u

j
t)

does not increase with the iteration index j.

Proof The stability of the closed-loop system can be shown as in Theorem 2. In particular,
we can exploit feasibility of (4.76)-(4.77) and the definition (4.9) to show that the local LMPC
cost J LMPC,j

l,t→t+N(xjt) ≤ h(xjt , u
j
t) + J LMPC,j

l,t→t+N(xjt+1).



44

Chapter 5

Time-Varying LMPC for Time
Optimal Control Problems

In time optimal control problems, the goal of the controller is to steer the system from
the starting point xS to the terminal point xF in minimum time, while satisfying state
and input constraints. These problems have been studied since the 1950s [74, 75, 76, 77]
and it was shown that the optimal input strategy is a piece-wise function which saturates
the input constraints [74, 75, 76]. Furthermore, while investigating the solution to time
optimal control problems, researches formalized the maximum principle which describes the
first order necessary optimality conditions [78, 72]. For linear systems, time optimal control
problems can be solved applying the maximum principle. However, for nonlinear systems
the optimality conditions are hard to solve, as those are described by a two boundary value
problem for a system of nonlinear differential equations [72].

In this chapter, we focus on nonlinear time optimal control problems, and we design
Time-Varying Learning Model Predictive Controllers (LMPC) which guarantees recursive
constraint satisfaction, convergence in finite time and iterative performance improvement.
Compared with the previous chapter, the safe set and Q-function are time varying. Further-
more, we show that convexifing the time varying safe set and Q-function allows us to reduce
the computational cost while guaranteeing safety and performance improvement for a class
of nonlinear system and convex constraints. Finally, we illustrate the effectiveness of the
proposed strategies on minimum time obstacle avoidance and racing examples.

5.1 Problem Formulation

Consider the nonlinear system
xjt+1 = f(xjt , u

j
t), (5.1)



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 45

where at time t of the jth iteration the state xjt ∈ Rn and the input ujt ∈ Rd. Furthermore,
the system is subject to the following state and input constraints

xjt ∈ X and ujt ∈ U ,∀t ≥ 0,∀j ≥ 0. (5.2)

The goal of the controller is solve the following minimum time optimal control problem

min
T,uj0,...,u

j
T−1

T−1∑
t=0

1

s.t. xjt+1 = f(xjt , u
j
t),∀t = [0, . . . , T − 1]

xjt ∈ X , u
j
t ∈ U ,∀t = [0, . . . , T − 1]

xjT = xF ,

xj0 = xS

(5.3)

where the goal state xF is an unforced equilibrium point for system (5.1), i.e. f(xF , 0) = xF .
We propose to solve Problem (5.3) iteratively. In particular, at each iteration we drive

the system from the starting point xS to the terminal state xF and we store the closed-loop
trajectories. After completion of the jth iteration, these trajectories are used to synthesize a
control policy for the next iteration j+1. We show that the proposed iterative design strategy
guarantees recursive constraint satisfaction and iterative performance improvement. Next,
we define the safe set and value function approximation which will be used in the controller
design.

5.2 Safe Set and Value Function Approximation

At each jth iteration of the control task, we store the closed-loop trajectories and the asso-
ciated input sequences. In particular, at the jth iteration we define the vectors

uj = [uj0, . . . , u
j
T j

],

xj = [xj0, . . . , x
j
T j

],
(5.4)

where xjt and ujt are the state and input of system (5.1). In (5.4), T j denotes the time at
which the closed-loop system reached the terminal state, i.e. xT j = xF .

5.2.1 Time Varying Safe Set

We use the stored data to build time varying safe sets, which will be used in the controller
design to guarantee recursive constraint satisfaction. First, we define the time varying safe
set at iteration j as

SSjt =

j⋃
i=0

T i⋃
k=δit

xik, (5.5)



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 46

where, for T j,∗ = mink∈{0,...,j} T
k,

δit = max(t+ T i − T j,∗, 0). (5.6)

Definition (5.6) implies that if at time t of the jth iteration xjt = xi
δit

, then system (5.1) can

be steered along the ith trajectory to reach xF in (T j,∗ − t) time steps. Basically, at each
time t the time varying safe set SSjt collects the stored states from which system (5.1) can
reach the terminal state xF in at most (T j,∗ − t) time steps. A representation of the time
varying safe set for a two-dimensional system is shown in Figure 5.1. We notice that, by
definition, if a state xit belongs to SSjt , then there exists a feasible control action uit ∈ U
which keeps the evolution of the nonlinear system (5.1) into the time varying safe set at the
next time step t + 1, i.e. f(xit, u

i
t) ∈ SS

j
t+1. This property will be used in the controller

design to guarantee that state and input constraints (5.2) are recursively satisfied.

Figure 5.1: Representation of the time varying safe set SS2
2. We notice that just a subset

of the stored states are used to define SS2
2. Furthermore, we notice that from all states

xit ∈ SS2
2 system (5.1) can be steered to xF in at most T j,∗ − t = 2 time steps.

Finally, at each time t the we define the local convex safe set as the convex hull of SSjt
from (5.5),

CSjt = Conv
(
SSjt

)
=
{
x ∈ Rn : ∃[λ0

δ0t
, ..., λj

T j
] ≥ 0,

j∑
i=0

T i∑
k=δit

λik = 1,

j∑
i=0

T i∑
k=δit

λikx
i
k = x

}
.

(5.7)

Later on we will show that for a class on nonlinear systems, if a state xit belongs to CSjt ,
then there exists a feasible control action uit ∈ U which keeps the evolution of the nonlinear



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 47

system (5.1) into the convex safe set at the next time step t+ 1. For such class of nonlinear
systems, CSjt can be used to synthesize controllers which guarantee state and input constraint
satisfaction at all time instants.

Remark 7 When the goal of the controller is to reach an invariant set XF in minimum
time, it is still possible to use the proposed iterative control strategy. In this case one should
replace xiT i = xF with XF in definition (5.5).

5.2.2 Time Varying Value Function Approximation

In this section, we show how to construct Q-functions which approximate the cost-to-go over
the safe set and convex safe set. These functions will be used in the controller design to
guarantee iterative performance improvement.

We define the cost-to-go associated with the stored state xjt from (5.4),

J j
t→T j(x

j
t) =

T j∑
k=t

1xF (xjk), (5.8)

where the indicator function

1xF (x) =

{
1 If xF 6= x

0 Else
.

The above cost-to-go represents the time steps needed to steer system (5.1) from xjt to the
terminal state xF along the jth trajectory, and it is used to construct the function Qj

t(·),
defined over the safe set SSjt ,

Qj
t(x) = min

i∈{0,...,j}
k∈{δit,...,T i}

J ik→T i(x
i
k)

s.t. x = xik ∈ SS
j
t .

(5.9)

The function Qj
t(·) assigns to every point in the safe set SSjt from (5.5) the minimum cost-

to-go along the stored trajectories from (5.4), i.e.

∀x ∈ SSjt , Q
j
t(x) = J

(i∗)

k∗→T (i∗)(x) =
T (i∗)∑
k=k∗

1xF
(
x

(i∗)
k

)
where i∗ and k∗ are the minimizers in (5.9):

[i∗, k∗] = argmin
i∈{0,...,j}
k∈{δit,...,T i}

J ik→T i(x
i
k)

s.t. x = xik ∈ SS
j
t .

(5.10)



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 48

Finally, we define the convex Q-function over the convex safe set CSjt from (5.7),

Q̄j
t(x) = min

[λ0
δ0t
,...,λj

Tj
]≥0

j∑
i=0

T i∑
k=δit

λikJ
i
k→T i(x

i
k)

s.t.

j∑
i=0

T i∑
k=δit

λikx
i
k = x

j∑
i=0

T i∑
k=δit

λik = 1.

(5.11)

where δit is defined in (5.6). The convex Q-function Q̄j
t(·) is simply a piecewise-affine in-

terpolation of Q-function from (5.9) over the convex safe set, as shown in Figure 5.2. In
Section 5.4, we will show that the convex Q-function can be used to guarantee iterative
performance improvement for a particular class on nonlinear systems.

Figure 5.2: Representation of the Q-function Q0
0(·) and convex Q-function Q̄0

0(·). We notice
that the Q-function Q0

0(·) is defined over a set of discrete data points, whereas the convex
Q-function Q̄0

0(·) is defined over the convex safe set.

5.3 Control Design

In this section, we describe the controller design. We propose a Learning Model Predictive
Control (LMPC) strategy for nonlinear systems which guarantees recursive constraint sat-
isfaction and iterative performance improvement. Computing the control action from the
LMPC policy is expensive. For this reason, we also present a relaxed LMPC policy, which
allows us to reduce the computational cost and it guarantees recursive constraint satisfaction
and performance improvement for a class of nonlinear systems.



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 49

5.3.1 LMPC: Mixed Integer Formulation

At each time t of the jth iteration the controller solves the following finite time optimal
control problem,

J LMPC,j
t→t+N(xjt) = min

Uj
t

[ t+N−1∑
k=t

1xF (xjk|t) +Qj−1
t+N(xjt+N |t)

]
s.t. xjk+1|t = f(xjk|t, u

j
k|t),∀k = t, · · · , t+N − 1

xjk|t ∈ X , u
j
k|t ∈ U ,∀k = t, · · · , t+N − 1

xjt+N |t ∈ SS
j−1
t+N

xjt|t = xjt

(5.12)

where Uj
t = [ujt|t, . . . , u

j
t+N−1|t] ∈ Rd×N . The solution to the above finite time optimal control

problem steers system (5.1) from xjt to the time varying safe set SSj−1
t while satisfying state,

input and dynamic constraints. Let

Uj,∗
t = [uj,∗t|t , . . . , u

j,∗
t+N−1|t] (5.13)

be the optimal solution to (5.12) at time t of the jth iteration. Then, we apply to the system
(5.1) the first element of the optimizer vector,

ujt = πLMPC,j
t (xjt) = uj,∗t|t . (5.14)

The finite time optimal control problem (5.12) is repeated at time t + 1, based on the new
state xt+1|t+1 = xjt+1, until the iteration is terminated when xjt+1 = xF .

Computing the control action from the LMPC policy (5.14) requires to solve a mixed-
integer programming problem, as SSj−1

t is a set of discrete states. In particular, the number
of integer variables grows are more iterations are stored. In Section 5.5 we will show that
the computational cost may be reduced synthesizing the LMPC policy (5.14) using a sub-
set of the stored iterations and P data points per iteration. Finally, in the result section
we will show that the number of data points used in the synthesis process affects the per-
formance improvement at each iteration. Therefore there is a trade-off between the online
computational burden and the number of iterations needed to reach desirable closed-loop
performance.

5.3.2 Relaxed LMPC: Nonlinear Formulation

In this section, we present a relaxed LMPC constructed using the convex safe set CSj−1
t

in (5.7). At each time t of the jth iteration we solve the following finite time optimal control



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 50

problem

J̄ LMPC,j
t→t+N(xjt) = min

Uj
t ,λ

j
t≥0

t+N−1∑
k=t

1xF (xjk|t) +

j−1∑
i=0

T i∑
k=δit

λikJ
i
k→T i(x

i
k)

s.t. xjk+1|t = f(xjk|t, u
j
k|t),∀k = t, · · · , t+N − 1

xjk|t ∈ X , u
j
k|t ∈ U , ∀k = t, · · · , t+N − 1

j−1∑
i=0

T i∑
k=δit

λikx
i
k = xjt+N |t,

j−1∑
i=0

T i∑
k=δit

λik = 1

xjt|t = xjt

(5.15)

where Uj
t = [ujt|t, . . . , u

j
t+N−1|t] ∈ Rd×N and the vector λjt = [λ0

0, . . . , λ
j−1
T j−1 ] ∈ RΠj−1

i=0T
i

de-

scribes the terminal constraint set CSj−1
t+N and terminal cost function Q̄j−1

t+N(·). Let the opti-
mal solution to (5.12) at time t of the jth iteration be

Uj,∗
t = [uj,∗t|t , . . . , u

j,∗
t+N−1|t]

λj,∗t = [λj,∗0 , . . . , λj,∗
Th−1 ].

(5.16)

Then, we apply to the system (5.1) the first element of the optimal input sequence,

ujt = π̄LMPC,j
t (xjt) = uj,∗t|t . (5.17)

Notice that the terminal constraints in (5.15) is enforced using nonlinear equality con-
straint, and therefore the computation burden is reduced with respect to the LMPC from
Section 5.3.1. In the next section we will show that for a class on nonlinear system the re-
laxed LMPC (5.15) and (5.17) has the same safety and performance improvement properties
of the LMPC presented in Section 5.3.1.

5.4 Properties

This section describes the properties of the proposed control strategies. We show that the
LMPC guarantees constraint satisfaction at all time instants, convergence in finite time to
xF and iterative performance improvement. Furthermore, we demonstrate that the same
properties are guaranteed when the relaxed LMPC is in closed-loop with a specific class on
nonlinear systems or when a sufficient condition on the stored data and the system dynamics
is satisfied.



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 51

5.4.1 Recursive Feasibility

We assume that a feasible trajectory which drives the system from the starting point xS to
the terminal state xF is given, and we show that the controller recursively satisfies state and
input constraints (5.2).

Assumption 3 We are given the closed-loop trajectory and associated input sequence

x0 = [x0
0, . . . , x

0
T 0 ] and u0 = [u0

0, . . . , u
0
T 0 ],

which satisfy state and input constraints (5.2). Furthermore, we have that x0
0 = xS and

x0
T 0 = xF .

Theorem 9 Consider system (5.1) controlled by the LMPC (5.12) and (5.14). Let SSjt
be the time varying safe set at iteration j as defined in (5.5). Let Assumption 3 hold and
assume that xj0 = xS ∀j ≥ 0, then at every iteration j ≥ 1 the LMPC (5.12) and (5.14) is
feasible for all t ≥ 0 when (5.14) is applied to system (5.1).

Proof By definition at time t = 0 we have that the state trajectory and associated input
sequence,

[xj−1
0 , . . . , xj−1

N ] and [uj−1
0 , . . . , uj−1

N−1], (5.18)

satisfy input and state constraint and therefore the LMPC at time t = 0 of the jth iteration
is feasible.
Assume that the LMPC (5.12) and (5.14) is feasible at time t, let (5.13) be the optimal
solution and xj,∗t+N |t = xi

∗

k∗, where xi
∗

k∗ is defined in (5.10). Then, we have that the following
state trajectory and associated input sequence

[xj,∗t+1|t, . . . , x
j,∗
t+N |t = xi

∗

k∗ , x
i∗

k∗+1]

[uj,∗t+1|t, . . . , u
j,∗
t+N−1|t, u

i∗

k∗ ],
(5.19)

satisfy input and state constraints (5.2) and the LMPC at time t + 1 of the jth iteration is
feasible.
Concluding, we have shown that the LMPC is feasible at time t = 0 of the jth iteration.
Furthermore, at each jth iteration we have that if the LMPC is feasible at time t, then the
LMPC is feasible at time t + 1. Therefore we conclude by induction that the LMPC (5.12)
and (5.14) is feasible for all t ≥ 0 and iteration j ≥ 1.

Next we consider a specific class on nonlinear systems which satisfies the following as-
sumption.

Assumption 4 Given any P states xi ∈ X and input ui ∈ U for i ∈ {1, . . . , P}, we have
that ∀x ∈ Conv(x1, . . . , xP ) there exists u ∈ Conv(u1, . . . , uP ) such that

f(x, u) ∈ Conv
(
f(x1, u1), . . . , f(xP , uP )

)
where f(·, ·) is defined in (5.1).



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 52

Finally, we show that if Assumption 4 is satisfied and the constraint sets in (5.2) are
convex, then the relaxed LMPC (5.15) and (5.17) in closed-loop with system (5.1) guarantees
recursive state and input constraint satisfaction.

Assumption 5 The state and input constraint sets X and U in (5.2) are convex.

Theorem 10 Consider system (5.1) controlled by the relaxed LMPC (5.15) and (5.17). Let
CSjt be the convex safe set at iteration j as defined in (5.7). Let Assumptions 3-5 hold and
assume that xj0 = xS ∀j ≥ 0, then at every iteration j ≥ 1 the relaxed LMPC (5.15) and
(5.17) is feasible for all t ≥ 0 when (5.17) is applied to system (5.1).

Proof We notice that by Assumption 4 it follows that ∀x ∈ CSjt there exists u ∈ U such that
f(x, u) ∈ CSjt+1. Therefore, if at time t of iteration j the relaxed LMPC (5.15) and (5.17) is
feasible with optimal solution (5.16), we have that there exists a state trajectory and related
input sequence

[xj,∗t+1|t, . . . , x
j,∗
t+N |t, f(xj,∗t+N |t, u) ∈ CSjt+1]

[uj,∗t+1|t, . . . , u
j,∗
t+N−1|t, u ∈ U ],

which satisfy state and input constraints (5.2) and therefore the relaxed LMPC (5.15) and
(5.17) is feasible at time t+1. Using this fact, the rest of the proof follows as for Theorem 9.

5.4.2 Convergence and Performance Improvement

We show that the closed-loop system (5.1) and (5.14) converges in finite time to the terminal
state xF . Furthermore, the time T j at which the closed-loop system converges to the terminal
state xF is non-increasing with the iteration index, i.e. T j ≤ T i,∀i ∈ {0, . . . , j − 1}. In the
following, we present a side result which will be used in the main theorem.

Proposition 2 Consider system (5.1) controlled by the LMPC (5.12) and (5.14). Assume
that SSj−1

t = xF and Qj−l
t = 0 for all t ≥ 0. If at time t Problem (5.12) is feasible, then the

closed-loop system (5.1) and (5.14) converges in at most t+N time steps to xF .

Proof Since SSj−1
t = xF is an invariant and Qj−l

t = 0, we have that the LMPC (5.12) and
(5.14) is feasible at all time instants and

J LMPC,j
t→t+N(xjt) ≥ h(xt) + J LMPC,j

t+1→t+1+N(xjt). (5.20)

Now, we assume that xi 6= xF∀i ∈ {t, . . . , t + N − 1} . Therefore by (5.20) we have that at
time k = t+N − 1

J LMPC,j
k→k+N(xjk) ≤ J LMPC,j

t→t+N(xjt)−
k∑
i=t

h(xi) = 1

which implies that xk+1 = xt+N = xj,∗t+N |t+N−1 = xF .



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 53

Theorem 11 Consider system (5.1) controlled by the LMPC (5.12) and (5.14). Let SSjt
be the time varying safe set at iteration j as defined in (5.5). Let Assumption 3 hold and
assume that xj0 = xS ∀j ≥ 0, then the time T j at which the closed-loop system (5.1) and
(5.14) converges to xF is non-increasing with the iteration index,

T j ≤ T k, ∀k ∈ {0, . . . , j − 1}.

Proof By Theorem 9 we have that the LMPC (5.12) and (5.14) is feasible for all time t ≥ 0.
Denote

T j−1,∗ = min
k∈{0,...,j−1}

T k

as the minimum to complete the task associated with the trajectories used to construct SSj−1
t+N .

By definitions (5.5)-(5.6), we have that at time t̄ = T j−1,∗ −N ≥ 0

SSj−1
t̄+N = SSj−1

T j−1,∗ = xF .

Therefore, by Proposition 2 the closed-loop system converges at most in t̄+N = T j−1,∗ steps.
Finally, we notice that T j = t̄+N = T j−1,∗ ≤ T k, ∀k ∈ {0, . . . , j − 1}.

Next, we show that if the relaxed LMPC (5.15) and (5.17) is in closed-loop with sys-
tem (5.1) which satisfied Assumption 4, then T j is non-increasing with the iteration in-
dex. The proof follows as in Theorem 11 exploiting the recursive feasibility of the relaxed
LMPC (5.15) and (5.17) from Theorem 10.

Proposition 3 Consider system (5.1) controlled by the LMPC (5.15) and (5.17). Assume
that CSj−1

t = xF and Q̄j−l
t = 0 for all t ≥ 0. If at time t Problem (5.15) is feasible, then the

closed-loop system (5.1) and (5.17) converges in at most t+N time steps to xF .

Proof The proof follows as in Proposition 2 replacing the LMPC cost J LMPC,j
t→t+N(·) with the

relaxed LMPC cost J̄ LMPC,j
t→t+N(·).

Theorem 12 Consider system (5.1) controlled by the LMPC (5.15) and (5.17). Let CSjt be
the time varying safe set at iteration j as defined in (5.7). Let Assumptions 3-5 hold and
assume that xj0 = xS ∀j ≥ 0, then the time T j at which the closed-loop system (5.1) and
(5.14) converges to xF is non-increasing with the iteration index,

T j ≤ T k, ∀k ∈ {0, . . . , j − 1}.

Proof By Theorem 10 we have that Problem (5.15) is feasible at all time t ≥ 0. Therefore,
the proof follows as for Theorem 11 using Proposition 3.



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 54

5.4.3 Sufficient Condition for the Relaxed LMPC

In the previous sections we discussed the properties of the relaxed LMPC strategy in closed-
loop with nonlinear systems which satisfy Assumption 4. Next, we show that the recursive
constraint satisfaction and performance improvement properties properties still hold, if we
replace Assumption 4 with the following assumption on the system dynamics and stored
data.

Assumption 6 Consider j stored feasible closed-loop trajectories xj and associated input
sequences uj. For all x ∈ Rn which can be expressed as convex combination of n + 1 stored
states, i.e.

x ∈ Conv
(⋃

{t,i}∈I(x) x
i
t

)
,

where the set I(x) = {{t0, i0}, . . . , {tn, in}} collects n+1 time and iteration indices associated
with the stored states, we have that there exists u ∈ U such that

f(x, u) ∈ Conv
(⋃

{t,i}∈I(x) f(xit, u
i
t)
)
.

We underlined that the above assumption is hard to verify in general. In practice,
Assumption 6 may be approximately checked using sampling strategies, as shown in the
result section.

Finally, we state the following theorem which summaries the necessary conditions that
guarantee recursive constraint satisfaction, convergence in finite time and iterative perfor-
mance improvement for the relaxed LMPC in closed-loop with the nonlinear system (5.1).

Theorem 13 Consider system (5.1) controlled by the relaxed LMPC (5.15) and (5.17). Let
CSjt be the time varying convex safe set at iteration j as defined in (5.7). Let Assumptions 3,
5 and 6 hold and assume that xj0 = xS ∀j ≥ 0. Then, the relaxed LMPC (5.15) and (5.17)
satisfies state and input constraints (5.2) at all time. Furthermore, the time T j at which
the closed-loop system (5.1) and (5.17) converges to xF is non-increasing with the iteration
index,

T j ≤ T k, ∀k ∈ {0, . . . , j − 1}.

Proof We assume that at time t the relaxed LMPC (5.15) and (5.17) is feasible, let (5.13)
be the optimal solution. As Assumption 6 holds, we have that there exists u ∈ U such that

[xj,∗t+1|t, . . . , x
j,∗
t+N |t, f(xj,∗t+N |t, u) ∈ CSjt+1]

[uj,∗t+1|t, . . . , u
j,∗
t+N−1|t, u ∈ U ],

satisfy state and input constraints (5.2), and therefore the relaxed LMPC (5.15) and (5.17)
is feasible at time t+ 1. The rest of the proof follows as in Theorems 10 and 12.



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 55

5.5 Data Reduction

In this section, we show that the proposed LMPC can be implemented using a subset of the
time varying safe set from (5.5). In particular, we show we the controller may be implemented
using the last l iterations and P data points per iteration.

5.5.1 Safe Subset

We define the time varying safe subset from iteration l to iteration j and for P data points

SSj,lt,P =

j⋃
i=l

δit+P⋃
k=δit

xik, (5.21)

where δit is defined in (5.6). Furthermore, in the above definition we set xik = xF for all k > T i

and i < 0. A representation of the time varying safe subset for a two-dimensional system is
shown in Figure 5.3. Compare the safe subset SSj,lt,P with the safe set SSjt from (5.5). We

notice that, SSj,lt,P is contained into SSjt . Therefore, at time t the safe subset collects the
stored states from which system (5.1) can reach the terminal state xF in at most (T j,∗ − t)
time steps. Finally, by definition, if a state xit belongs to SSj,lt,P , then there exists a feasible
control action uit ∈ U which keeps the evolution of the nonlinear system (5.1) into the time
varying safe set at the next time step t+ 1, i.e. f(xit, u

i
t) ∈ SS

j,l
t+1,P . This property allows us

to replace SSj,lt,P with SSjt in the design of the LMPC (5.14) and (5.12), without loosing the
recursive constraint satisfaction property from Theorem 9.

Figure 5.3: Representation of the time varying safe subset SS2,1
2,2. We notice that just a

subset of the stored states are used to define SS2,1
2,2.



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 56

Finally, at each time t the we define the local convex safe subset as the convex hull of
SSj,lt,P from (5.5),

CSj,lt,P = Conv
(
SSj,lt,P

)
. (5.22)

We underline that relaxed LMPC from Section 5.3.2 may be implemented replacing the the
convex safe set (5.7) with the convex safe subset (5.22).

5.5.2 Q-function

In the section, we construct the Q-function which assigns the cost-to-go to the states con-
tained into the time varying safe subset from (5.21). In particular, we introduce the function
Qj,l
t,P (·), defined over the safe subset SSj,lt,P , as

Qj,l
t,P (x) = min

i∈{l,...,j}
t∈{δit,...,δit+P}

J it→T i(x
i
t)

s.t. x = xit ∈ SS
j,l
t,P .

(5.23)

Compare the above function Qj,l
t,P with Qj

t from (5.9). We notice that, the domain of Qj,l
t,P is

the safe subset SSj,lt,P and the domain of the Qj
t is the safe set SSjt ⊇ SS

j,l
t,P . Moreover, we

have that
∀x ∈ SSj,lt,P , Q

j,l
t,P (x) = Qj

t(x).

Therefore, if we replace Qj
t with Qj,l

t,P in the design of the LMPC policy (5.14), then the finite
time convergence and performance improvements properties still hold.

Furthermore, we define the convex Q-function Q̄j,l
t,P from iteration l to iteration j and P

data points as

Q̄j,l
t,P (x) = min

[λ0
δit

,...,λj
δit+P

]≥0

j∑
i=0

δit+P∑
k=δit

λikJ
i
k→δit+P

(xik)

s.t.

j∑
i=0

δit+P∑
k=δit

λikx
i
k = x

j∑
i=0

δit+P∑
k=δit

λik = 1.

(5.24)

where δit is defined in (5.6). The above convex Q-function Q̄j
t(·) is simply a piecewise-affine

interpolation of Q-function from (5.23) over the convex safe subset, as shown in Figure 5.4.
We underline that Q̄j,l

t,P can be used in the relaxed LMPC design instead of Q̄j
t .



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 57

Figure 5.4: Notice that the Q-function Q0,0
0,3(·) is defined over a set of discrete data points,

whereas the convex Q-function Q̄0,0
0,3(·) is defined over the convex safe set.

5.6 Examples

We test the proposed strategy on 3 time optimal control problems. In first example, the
LMPC is used to drive a dubins car from the staring point xS to the terminal point xF
while avoiding an obstacle. In the second example, we control a nonlinear double integrator
system, which satisfies Assumption 4. Finally, the third example is a dubins car racing
problem, which we solved using the relaxed LMPC after checking Assumption 6 via sampling.
The code for these examples is available at https://github.com/urosolia/LMPC in the
NonlinearLMPC folder.

5.6.1 Minimum time obstacle avoidance

We use the LMPC policy synthesized with the mixed integer approach from Section 5.3.1 on
the minimum time obstacle avoidance optimal control problem from Section 4,

min
T,a0,...,aT−1
θ0,...,θT−1

T−1∑
t=0

1

s.t.

xt+1

yt+1

vt+1

 =

xt + vt cos(θt)
yt + vt sin(θt)

vt + at

 ,∀t ≥ 0

(xt − xobs)
2

a2
x

+
(yt − yobs)

2

a2
y

≥ 1,∀t ≥ 0[
−π/2
−1

]
≤
[
θt
at

]
≤
[
π/2
1

]
, ∀t ≥ 0

xT = xF = [54, 0, 0]T ,

x0 = xS = [0, 0, 0]T .

https://github.com/urosolia/LMPC


CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 58

The goal of the above minimum time optimal control problem is to steer the dubins car from
the starting state xS to the terminal point xF , while satisfying input saturation constraints
and avoiding an obstacle. The obstacle is represented by an ellipse centered at (xobs, yobs) =
(27,−1) with semi-axis (ax, ay) = (8, 6). At iteration 0, we compute a first feasible trajectory
using a brute force algorithms and we use the closed-loop data to initialize the LMPC (5.12)
and (5.14) with N = 6.

We compare the performance of the LMPC from [79] and of the LMPC policies (5.14)
synthesized using different number of data points P = {8, 10, 40} and iterations i = {1, 2, 3},
as described in Section 5.5 (i.e. basically in definition (5.21) we set l = j− 1− i). Figure 5.5
shows the time T j at which the closed-loop system converged to the terminal state xF at
each iteration index. We notice that all LMPC policies converge to a steady state behavior
which steers the system from xS to xF in 16 time steps. Furthermore, Figure 5.5 shows that
the number of iterations needed to reach convergence is proportional to the amount of data
used to synthesize the LMPC policy.

Figure 5.5: Time steps T j to reach xF as a function of the iteration index. We notice that
as more data points are used in the synthesis process, the number of iterations needed to
reach a steady state behavior decreases.

Figure 5.6 shows that the computational time increases as more data points P are used in
the control design. Therefore, there is a trade-off between the computational burden and the
performance improvement at each iteration from Figure 5.5. It is interesting to notice that
the computational cost associated with the proposed time varying LMPC strategy converges
to a steady state value. On the other hand, the computation cost associate with the LMPC
strategy from [79] increases at each iteration. Therefore, we confirm that the proposed time
varying LMPC (5.12) and (5.14) allows us to reduce the computational cost while achieving
the same closed-loop performance.

Finally, we analyse the closed-loop trajectories associated with the LMPC policy (5.14)



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 59

Figure 5.6: Computational cost associated with the LMPC policy at each time t as function
of the iteration index. We notice that as more data points are used in the synthesis process,
the computational cost increases.

Figure 5.7: First feasible trajectory, stored data points and closed-loop trajectory at the 6th
iteration. We notice that the LMPC is able to avoid the obstacle at each iteration.

synthesized with P = 8 data points and i = 1 iteration. Figure 5.7 shows the first feasible
trajectory, the stored data points and the closed-loop trajectory at convergence. We confirm
that the LMPC is able to explore the state space while avoiding the obstacle and steering
the system from the starting state xS to the terminal state xF . Furthermore, we notice that
the LMPC accelerates during the first part of the task, and then it decelerates to reach the
terminal state with zero velocity, as shown in Figure 5.8.



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 60

Figure 5.8: Acceleration and speed profile at convergence. We notice that the controller
accelerates for the first 8 time steps and afterwards it decelerates to reach the terminal state
goal state with zero velocity.

5.6.2 Nonlinear Double Integrator

In this section, we test the relaxed LMPC (5.15) and (5.17) on the following nonlinear double
integrator problem

min
T,a0,...,aT−1

T−1∑
t=0

1

s.t.

[
xt+1

vt+1

]
=

[
xt + vtdt

vt +
(
1− v2t

v2max

)
atdt

]
,∀t ≥ 0

0 ≤ vt ≤ vmax, ∀t ≥ 0

− 1 ≤ at ≤ 1,∀t ≥ 0

xT = xF = [0, 0]T ,

x0 = xS = [−10, 0]T ,

(5.25)

where the state of the system are the velocity vt and the position xt. The control action
is the acceleration at which is scaled by the concave function g(vt) =

(
1 − v2

t /v
2
max

)
. In

Section 5.7.1 of the Appendix we show that the above nonlinear double integrator satisfies
Assumption 4. We used an handcrafted policy to perform the first feasible trajectory used to
initialize the relaxed LMPC policies synthesized with N = 4. Furthermore, we implemented
the strategy from Section 5.5 using P = {12, 25, 50, 200} data points and i = {1, 3, 4, 10}
iterations.

Figures 5.9 shows the number of iterations needed to reach convergence. We notice
that as more data points P are used in the policy synthesis process, the closed-loop system



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 61

convergence faster in the iteration domain to a trajectory which performs the task in 14 time
steps.

Figure 5.9: Time steps T j to reach xF as a function of the iteration index. We notice that,
also in this example, as more data points are used in the synthesis process, the number of
iterations needed to reach a steady state behavior decreases.

Figure 5.10: First feasible trajectory and closed-loop trajectories at the 10th iteration. We
notice that all LMPC policies converged to as similar behavior.

Finally, Figures 5.10 and 5.11 show the steady-state closed-loop trajectories and the
associated input sequences for all tested policies. We notice that after few iterations of the
control task, the closed-loop systems converged to a similar behavior. In particular, the
controller saturates the acceleration and deceleration constraints, as we would expect from



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 62

Figure 5.11: Acceleration inputs associated with the closed-loop trajectories at the 10th
iteration. We notice that the controller saturated the acceleration constraints.

the optimal solution to a time optimal control problem (Fig. 5.11). It is interesting to notice
that accelerating the nonlinear double integrator to a peak speed requires more control effort
than slowing down the system to zero speed. Therefore, the controller accelerates for the
first 6 time steps and then it decelerates for the last 8 time steps to reach the terminal state
with zero velocity.

5.6.3 Minimum Time Dubins Car Racing

We test the relaxed LMPC (5.15) and (5.17) on a minimum time racing problem. The goal of
the controller is to drive the dubins car on a curve of constant radius R = 10 from the staring
point xS to the finish line. More formally, we would like to solve the following minimum
time optimal control problem

min
T,a0,...,aT−1
θ0,...,θT−1

T−1∑
t=0

1

s.t.

st+1

et+1

vt+1

 =

 st + vt cos(θt−γ(st))
1−et/R dt

et + vt sin(θt − γ(st))dt
vt + atdt

 ,∀t ≥ 0

[
−2
−1

]
≤
[
θt
at

]
≤
[
2
1

]
,∀t ≥ 0

emin ≤ et ≤ emax,∀t ≥ 0

xT ∈ XF ,
x0 = xS = [0, 0, 0]T ,

(5.26)



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 63

where γ(st) is the angle of the tangent vector to the centerline of the road at the curvilinear
abscissa st, the discretization time dt = 0.5 and the lane half width emax = −emin = 2.0.
The control actions are the heading angle θt and the acceleration command at. The sys-
tem is represented in the curvilinear abscissa reference frame where the state st, et and vt
are the distance travelled along the centerline, the lateral distance from the center of the
lane and the velocity, respectively. Notice that in the curvilinear abscissa reference frame
the lane boundaries are represented by convex constraints on the state et, and therefore
Assumption (5) is satisfied. The finish line is described by the following terminal set

XF =

{
x ∈ R3

∣∣∣∣∣
18.19
−emin

0

 ≤ x ≤

18.69
emin

0

}. (5.27)

As mentioned in Remark 7, in order to implement the LMPC to steer the system to ter-
minal set instead of a terminal point, we replaced xiT i = xF with the vertices of XF in
definitions (5.7) and (5.11).

Figure 5.12: Time steps T j to reach xF as a function of the iteration index. We notice
that as more points P and iterations i are used to synthesize the relaxed LMPC policy, the
closed-loop system converges faster to a steady state behavior.

In order to compute the first feasible trajectory needed to initialize the LMPC, we set
θ0
t = γ(s0

t ) and we controlled the acceleration to steer the dubins car from xS to the terminal
set XF . Notice that for θ0

t = γ(s0
t ) the system is linear and consequently Assumption 6

is satisfied for iteration j = 0. However, for j > 0 it is hard to verify analytically if
Assumption 6 holds, therefore we used a sampling strategy to approximately check this
condition, as shown in the Appendix 5.7.2.

We test different LMPC policies synthesised with N = 4 and using the strategy described
in Section 5.5 for P = {15, 25, 50, 200} data points and i = {1, 3, 4, 10} iterations. Figure 5.12



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 64

Figure 5.13: Comparison between the first feasible trajectory used to initialize the LMPC
and the steady state LMPC closed-loop trajectories at convergence.

Figure 5.14: Comparison of the steady state inputs associated with the relaxed LMPC
policies. We notice that the acceleration and deceleration is saturated, as we expect from
the optimal solution to a minimum time optimal control problem.

shows time steps T j needed to reach the terminal set (5.27). We notice that after few
iterations all LMPC policies converged to a steady state behavior which steers the system
to the goal set in 16 time steps. Also in this example, convergence is reached faster as more
data points are used in the LMPC synthesis process.

Finally, Figures 5.13 and 5.14 show that closed-loop trajectories and associated input
sequence at converged. In order to minimize the travel time, the LMPC cuts the curve and
it drives the system to a state in the terminal set which is close to the road boundaries.



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 65

Furthermore, we notice that the controller saturates the acceleration and deceleration con-
straints, as we expect from an optimal solution to a minimum time optimal control problem.

5.7 Appendix

5.7.1 Nonlinear Double Integrator

In this section, we show that the following nonlinear double integrator

zk+1 =

[
xk+1

vk+1

]
=

[
xk + vkdt

vk + g(vk)akdt

]
= fn(zk, ak)

for g(vk) = (1− v2
k/v

2
max) satisfies Assumption 4. First we notice that given P states xi ∈ X

and inputs ui ∈ U for i ∈ {1, . . . , P} and a set of multiplies [λ0, . . . , λP ] ≥ 0

x =
P∑
k=1

λkxk and
P∑
k=1

λk = 1,

we have that
P∑
k=0

λkfn(zk, ak) =
P∑
k=0

fn(λkzk, a)

where

a =

∑P
k=0 λkg(vk)ak

g
(∑P

k=0 λkvk
) .

Finally, by concavity of g(vk) ≥ 0 for all zk = [xk, vk]
T ∈ X we have that

min
k=1,...,P

ak ≤
∑P

k=0 λkg(vk)ak

g
(∑P

k=0 λkvk
) ≤ max

k=1,...,P
ak

and therefore Assumption 4 is satisfied.

5.7.2 Dubins Car

We used a sampling strategy to check if Assumption 6 is approximately satisfied. Before
running the (j + 1)th iteration of the relaxed LMPC, we randomly sample

x(l) ∈ Conv
(⋃

{t,i}∈I(x(l)) x
i
t

)
for l ∈ {0, . . . , 105},

where I(x(l)) is defined in Assumption 6. Afterwards, we checked if ∃u ∈ U such that

f(x(l), u) ∈ Conv
(⋃

{t,i}∈I(x(l)) f(xit, u
i
t)
)
.



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 66

For all tested data points and iterations Assumption 6 was satisfied. Notice that as we used
a subset of the stored data to construct (5.7) and (5.9), we checked Assumption 6 for the
stored closed-loop trajectory performed at iteration j. Finally, for j = {3, 5, 10} Figures 5.15,
5.16 and 5.17 show the randomly generated states where we have verified that Assumption 6
holds.

Figure 5.15: Randomly sampled states used to check that Assumption 6 is approximately
satisfied.



CHAPTER 5. TIME-VARYING LMPC FOR TIME OPTIMAL PROBLEMS 67

Figure 5.16: Randomly sampled states used to check that Assumption 6 is approximately
satisfied.

Figure 5.17: Randomly sampled states used to check that Assumption 6 is approximately
satisfied.



68

Chapter 6

Learning Model Predictive Control
for Uncertain Systems

In this chapter, we describe how to design LMPC policies for uncertain systems. First, we
iteratively construct robust safe sets and robust Q-functions. Afterwards we present the
LMPC synthesis process and we propose an approximation strategy that leverages closed-
loop historical data to reduce the computational burden. Finally, we test the controller on
a constraint LQR problem and on a parking example.

In order to better motivate this chapter, we describe the challenges associated with the
computation of safe sets using historical data of uncertain systems. First, we recall how
historical data can be used to compute invariant sets for deterministic systems. Consider
the discrete time linear system

x̄jt+1 = Ax̄jt +Bπj(x̄jt)

where πj(·) is a feedback policy known only along the jth stored closed-loop trajectory
x̄j = [x̄j0, . . . , x̄

j
t , . . .]. Assume that πj(·) is able to execute the desired task safely. At any

iteration i > j and time k ≥ 0, if the system state xik equals a state xjt which has been
visited at the jth iteration, then the feedback policy πj(·) will drive the system along the
jth trajectory. This obvious fact is a consequence of the system being deterministic. More
importantly, if the policy πj(·) brings the system to an equilibrium point, then the convex
hull of visited states is a control invariant set. Therefore, invariant sets for deterministic
systems can be easily built from data.

In contrast, when dealing with uncertain systems, the set of visited states is not an
invariant set. In fact, consider the discrete time uncertain system

xjt+1 = Axjt +Bπj(xjt) + wjt

where the random disturbance wjt belongs to the setW and the jth stored trajectory is xj =
[xj0, . . . , x

j
t , . . .]. Assume that πj(·) is able to execute the desired task safely at iteration j.



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 69

We notice that the stored trajectory xj is associated with a specific disturbance realization
[wj0, . . . , w

j
t , . . .]. For this reason, at any iteration i > j and time k ≥ 0, if the system state

xik equals a state xjt that has been visited, applying the feedback policy πj(·) may drive the
system to a state neither stored nor safe, due to a potentially different disturbance realization
[wj+1

0 , . . . , wj+1
t , . . .]. In conclusion, the set of visited states cannot be naively exploited to

compute invariant sets.
For the above reason, one cannot simply use the deterministic Learning MPC approach

presented in Chapter 4 for uncertain systems. In this chapter, we present a strategy to
construct robust invariant sets for linear uncertain systems. Then, we use these sets in an
iterative learning predictive control schema. Finally, we propose a synthesis procedure which
leverages roll-outs of the closed-loop system to approximate the terminal cost and constraint.

6.1 Problem Formulation

We consider the following linear time invariant system

xjt+1 = Axjt +Bujt + wjt (6.1)

where at time t of the jth iteration the disturbance wjt ∈ W , the state xt ∈ Rn and input
ujt ∈ Rd. Furthermore, the system is subject to the following convex polytopic state and
input constraints, for all t ≥ 0

xjt ∈ X and πj(xjt) ∈ U .

At each jth iteration, we define the worst-case iteration cost associated with the control
policy πj(·), as the solution to the following Bellman recursion

J j
πj

(xj0) = max
w∈W

[h(xj0, u
j
0) + J j

πj
(Axj0 +Bπj(xj0) + w)]. (6.2)

The goal of the control design is to solve the following infinite time robust optimal control
problem,

J j,∗0→∞(xjS) = min
πj(·)

J j
πj

(xj0)

xjk+1 = Axjt +Bπj(xjt) + wjt ,

xjk ∈ X , u
j
k ∈ U ,

ujt = πj(xjt),∀t ∈ {0, 1, . . .}
xj0 = xjS,

∀t ∈ {0, 1, . . .},∀wjt ∈ W

(6.3)

In the following, we propose to solve the above Problem (6.3) iteratively. At each iteration
j, we design a feedback policy

ujt = πj(·) : F j ⊆ X → U (6.4)



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 70

which guarantees i) convergence of the closed-loop system (6.1) and (6.4) to a neighborhood
of the origin O, ii) safety : state and input constraints are robustly satisfied, iii) performance
improvement : if the controller performs the same task repeatedly (i.e. xj0 = xj+1

0 ), then
the worst-case iteration cost (6.2) is non-decreasing (i.e. J j+1

πj+1(x
j+1
0 ) ≤ J j

πj
(xj0)), and iv)

exploration: the domain of the policy (6.4) is not shrinking with the iteration index (i.e.
F i ⊆ F j, ∀j ≥ i).

Throughout this chapter we use the standard function classes K, K∞ and KL notation
(see [22]) and we define the distance from a point x ∈ Rn to a set O ⊆ Rn as

|x|O = inf
d∈O
||x− d||1.

Furthermore, we make the following assumptions.

Assumption 7 The set O ⊂ Rn is a robust positive invariant set for the autonomous system
xt+1 = (A+BK)xt + wt and wt ∈ W,

∀x ∈ O → (A+BK)xt + wt ∈ O,∀wt ∈ W .

Assumption 8 The continuous stage cost h(·, ·) is jointly convex in its arguments. Fur-
thermore, we assume that ∀x ∈ Rn,∀u ∈ Rd

αlx(|x|O) ≤ h(x, 0) ≤ αux(|x|O) and αlu(|u|KO) ≤ h(0, u) ≤ αux(|u|KO),

where αux, α
l
x, α

u
u and αlu ∈ K∞.

6.2 Safe Set

In this section, we show how to iteratively construct a set of states from which the control
task can be safely executed using the control policy (6.4). These safe sets will be used in the
controller design to guarantee robust recursive constraint satisfaction.

First, we introduce the concise notation for the robust reachable set for the closed-loop
system (6.1) and (6.4),

Rt+1(xj0) =

{
xt+1 ∈ X

∣∣∣∣∣ ∃wt ∈ W , xt ∈ Rt(x
j
0),

xt+1 = Axt +Bπj(x) + w

}
(6.5)

withR0(xj0) = xj0. The robust reachable setRt(x
j
0) collects that states which may be reached

by the closed-loop system (6.1) and (6.4) in t time steps.This property allows us to define
the safe set at the jth iteration,

SSj =

{ T j⋃
t=0

Rt(x
j
0)

}⋃
O, (6.6)



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 71

for a control task of T j time steps. Notice that the safe set contains the state evolution of
the closed-loop system (6.1) and (6.4) from the initial state xj0 until completion of the control
task. Furthermore, we underline that robust reachable sets (6.5) are computed propagating
the vertices of the disturbance through the system dynamics. Therefore, the computational
complexity of constructing the safe set SSj explodes with the length of the control task T j.
For this reason in Section 6.5.1, we will show how to approximate the safe set SSj using
historical data from the closed-loop system (6.1) and (6.4).

Finally, we define the convex safe set CSj as the convex hull of the safe sets SSk for
iterations k ∈ {0, . . . , j},

CSj = conv

(
j⋃

k=0

SSk
)
. (6.7)

Figure 6.1 shows the robust convex safe set at iteration j = 1. Notice that, if the control
policies πk(·) for k ∈ {0, . . . , j} safely steer the system to the neighborhood of the origin O.
Then, CSj is a robust control invariant set as stated by the following proposition.

Figure 6.1: Representation of the robust convex safe set CS1 (dashed green line) at iteration
j = 1. The figure reports also the N -steps robust reachable sets Rt(x

1
0) (dashed blue line)

and the robust invariant set O (solid black line).

Proposition 4 For j ≥ 1, let πj(·) : F j → U be a control policy defined over F j ⊆ X .
Consider system (6.1) in closed-loop with πj(·) and assume that ∀xj0 ∈ F j we have xjt ∈ X
and xj

T j
∈ O ∀wt ∈ W , t ≥ 0. Then, the convex safe set CSj is a robust control invariant

set for system (6.1), i.e.

∀x ∈ CSj → Ax+Bπj(x) + w ∈ CSj, ∀w ∈ W .

Proof By the assumptions on πk(·) for k ∈ {0, . . . , j} and definition (6.6), we have that
SSk is a robust control invariant set for k ∈ {0, . . . , j}. Therefore, by linearity of system
(6.1) it follows that CSj is a robust control invariant set. �



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 72

6.3 Q-function

The convex safe set from the previous section represents a subset of states from which the
control task may be safely completed. Next, we define the value function Qj(·) : CSj → R,
which approximates the cost-to-go from any state contained into the convex safe set. This
function will allow us to guarantee worst-case performance improvement at each iteration.

Recall that the Bellman recursion (6.2) for the control policy πj(·)

J j
πj

(x) = max
w∈W

[h(x, πj(x)) + J j
πj

(Ax+Bπj(x) + w)] (6.8)

represents the worst-case cost-to-go from any point in the state space. The solution to the
above Bellman recursion is hard to compute [14] and closed-form exists just for few problems
[10]. For a survey on strategies to approximate the Bellman recursion we refer to [14, 13].

As the worst-case cost-to-go (6.8) is hard to compute over the entire state space, we
defined the worst-case cost-to-go over the safe set as

Lj
πj

(x) =

{
max
w∈W

[h(x, πj(x)) + Lj
πj

(Ax+Bπj(x) + w))] If x ∈ SSj

+∞ If x /∈ SSj
(6.9)

Notice that, for all x ∈ SSj, the above function coincides with the Bellman equation (6.8).
The difference between J j

πj
(·) and Lj

πj
(·) is that the domain of the latter is the safe set SSj

from (6.6). This fact allows us to use a simple data-based strategy to approximate Lj
πj

(·),
as shown in Section 6.5.2.

Finally, for all x ∈ CSj we define the function

Qj(x) = min
µ
µ | (x, µ) ∈ conv

(⋃j
k=0 epi(Lπj(x)j)

)
, (6.10)

which interpolates the worst-case cost-to-go functions Lk
πk

(·) for k ∈ {0, . . . , j}. Notice that
the above Qj(·) is simply a convexification of the cost-to-go functions (i.e. epi(Qj(x)) =
conv

(
∪jk=0 epi(Lπk(x)k))). Furthermore, if the control policies πk(·) for k ∈ {0, . . . , j} safely

steer the system to the neighborhood of the origin O, then the approximated value function
Qj(·) is a robust control Lyapunov function over the convex safe set CSj for system (6.1),
as shown by the following proposition.

Proposition 5 For j ≥ 1, let πj(·) : F j → U be a control policy defined over F j ⊆ X .
Consider system (6.1) in closed-loop with πj(·) and assume that ∀xj0 ∈ F j we have xjt ∈ X
and xj

T j
∈ O ∀wt ∈ W , k ≥ 0. Then, Qj(·) is a robust control Lyapunov function, i.e.

min
u∈U

max
w∈W

Qj(Ax+Bu+ w) + h(x, u)−Qj(x) ≤ 0

for all x ∈ CSj.



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 73

Proof By the assumptions on πk(·) for k ∈ {0, . . . , j} and definitions (6.9) and (6.10), we
have that ∀xk ∈ SSk, k ∈ {0, . . . , j}

max
w∈W

Qj(Axk +Buk + w) + h(x, uk))−Qj(xk) ≤ 0 (6.11)

for uk = πk(xk). From (6.10) we have that if x ∈ CSj, then we can find some multiplies
λk ≥ 0 for k ∈ {0, . . . , j} such that

∑j
k=0 λ

k = 1,
∑j

k=0 λ
kxk = x and

∑j
k=0 λ

kQj(xk) =
Qj(x). Now, we notice that by the Assumption 8 and (6.11) we have that ∀x ∈ CSj

Qj(x) =
∑j

k=0 λ
kQj(xk)

≥
∑j

k=0 λ
kmax
w∈W

[Qj(Axk +Buk + w) + h(xk, uk)]

≥ max
w∈W

Qj(Ax+Bu+ w) + h(x, u)

for u =
∑j

k=0 λ
kuk =

∑j
k=0 λ

kπk(xk) ∈ U . �

6.4 Control Design

In this section, we illustrate the controller design which exploits the convex safe set (6.7) and
the approximated value function (6.10). Afterwards, we describe the controller properties.
In particular, we show that the proposed strategy guarantees recursive robust constraint
satisfaction and iterative worst-case performance improvement.

6.4.1 Robust Learning Model Predictive Control

At each time t of the jth iteration, we design and solve the following finite time optimal
control problem

J LMPC,j
t→t+N(xjt) = min

πjt (·)
max
w̄j
t

[
t+N−1∑
k=t

h(xjk|t, u
j
k|t) +Qj−1(xjt+N |t)]

xjk+1|t = Axjk|t +Bujk|t + w̄jk|t,

xjk|t ∈ X , u
j
k|t ∈ U ,

xjt+N |t ∈ CS
j−1,

ujk|t = πjk|t(x
j
k|t)

xjt|t = xjt ,

∀k ∈ {t, . . . , t+N},∀w̄jk|t ∈ W

(6.12)

where the control policy πjt (·) = [πjt|t(·), . . . , π
j
t+N |t(·)] and the disturbance w̄j

t = [w̄jt|t, . . . , w̄
j
t+N |t].

The optimal feedback policy from the above finite time optimal control problem safely steers
system (6.1) from xjt to the convex safe set, while minimizing the worst-case cost.



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 74

Let
πj,∗t (·) = [πj,∗t|t (·), . . . , πj,∗t+N |t(·)] (6.13)

be the optimal feedback policy to Problem (6.12). Then we apply to system (6.1)

πj(xjt) = πj,∗t|t (xjt). (6.14)

The finite time optimal control problem (6.12) is solved at time t+1, based on the new state
xjt+1|t+1 = xjt+1, yielding a moving or receding horizon control strategy.

Furthermore, we define the domain of the LMPC policy (6.14), which is given by

F j =

{
x0 ∈ X

∣∣∣∣∣
∃κ(·) : Rn → Rd, xt ∈ X , κ(xt) ∈ U

xt+1 = Axt +Bκ(xt) + wt,
xN ∈ CSj−1, ∀wt ∈ W , t ∈ {0, . . . , N}

}
. (6.15)

The set F j collects the feasible initial conditions for Problem (6.12) and it is used to compute
the initial state xj0 of the jth iteration. In particular, the initial condition at the jth iteration
is computed solving the following convex optimization problem,

xj0 = argmax
x∈Fj

{ax | a⊥x = 0} (6.16)

where the user-defined row vector a ∈ Rn represents the direction in which the LMPC
explores the state space. Finally, a⊥ ∈ Rn in (6.16) is a row vector perpendicular to a.

It is well-known that the solution to Problem (6.12) can be computed enumerating the
vertices of the disturbance over the prediction horizon [80]. Therefore, the computational
complexity of Problem (6.12) explodes with the horizon length N . For this reason, it is
important to construct a terminal set and terminal cost, which allow us to guarantee safety
and performance improvement independently on the prediction horizon length. In the result
section, we show that the proposed controller is able to safely explore the state space and to
improve its performance, even with a short prediction horizon.

6.4.2 Properties

As discussed in Propositions 4-5, for every point in CSj there exists a control policy which
safely steers the system to the terminal goal set. The properties of CSj and Qj(·) allow us to
guarantee that the proposed strategy meets the requirements from Section 6.1. The following
theorem shows that the LMPC (6.12) and (6.14) satisfies state and input constraints while
steering the system to the neighborhood of the origin O.

Theorem 14 Consider system (6.1) in closed-loop with the LMPC (6.12) and (6.14). Let
Assumptions 7-8 hold, initialize CS0 = O and Q0(·) = 0. If xj0 ∈ F j,∀j ≥ 1, then the
LMPC (6.12) and (6.14) is feasible for all t ≥ 0 and iteration j ≥ 1. Furthermore, the
closed-loop system asymptotically converges to O, regardless of the disturbance realization.



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 75

Proof Assume that at the jth iteration Qj(·) is a robust control Lyapunov function defined
on the robust control invariant set CSj. Then, by standard MPC arguments and the assump-
tion on xj0 ∈ F j, we have that at iteration j + 1 the LMPC (6.12) and (6.14) recursively
satisfies state and input constraints, and the closed-loop system (6.1) and (6.14) converges
asymotically to the terminal set O [10]. Consequently, the LMPC policy at iteration j + 1
used to compute Qj+1(·) and CSj+1 satisfies the assumptions in Propositions 4-5, and there-
fore Qj+1(·) is a robust control Lyapunov function defined on the robust control invariant set
CSj+1.
The proof is completed by induction. We initialized Q0(·) = 0, which is a robust control
Lyapunov function defined on the robust control invariant set CS0 = O. Therefore it follows
that ∀j ≥ 1 the LMPC (6.12) and (6.14) recursively satisfies state and input constraints,
and the closed-loop system (6.1) and (6.14) converges asymotically to the terminal set O.

Next, we discuss the performance improvement properties. In particular, we show that
if the initial condition of two subsequent iterations does not change (i.e. xj0 = xj+1

0 ), then
the worst-case cost iteration cost is non-increasing.

Theorem 15 Consider system (6.1) in closed-loop with the LMPC (6.12) and (6.14). Let
Assumptions 7-8 hold, initialize CS0 = O and Q0(·) = 0. If the initial condition of two
subsequent iterations are equal, xj+1

0 = xj0 ∈ F j. Then, the worst-case iteration cost (6.2) is
non-increasing with the iteration index J j+1

0→T j+1(x
j+1
0 ) ≤ J j

0→T j(x
j
0).

Proof By Theorem 14, the LMPC (6.12) and (6.14) is feasible at time t of the jth iteration.
Let (6.13) be the optimal policy time t of the jth iteration, by Proposition 5 we have

J LMPC,j
t→t+N(xjt) =

t+N−1∑
k=t

h(xj,∗k|t, π
j,∗
k|t(x

j,∗
k|t)) +Qj−1(xj,∗t+N |t)

≥ h(xj,∗t|t , u
j,∗
t|t ) +

t+N−1∑
k=t+1

h(xj,∗k|t, π
j,∗
k|t(x

j,∗
k|t)))

+ min
u∈U

max
w∈W

Qj−1(Axj,∗t+N |t +Bu+ w) + h(xj,∗t+N |t, u)

≥ h(xj,∗t|t , u
j,∗
t|t ) + min

πjt (·)
max
wj
t

[
t+N−1∑
k=t

h(xk|t, uk|t) +Qj−1(xt+N |t)]

= h(xj,∗t|t , u
j,∗
t|t ) + J LMPC,j

t+1→t+1+N(xjt+1).

The above equation and the convergence of the closed-loop system (6.1) and (6.14) from
Theorem 1 imply that

J LMPC,j
0→N (xj0) ≥ h(xj,∗0|0, x

j,∗
0|0) + J LMPC,j

1→1+N(xjt+1)

≥
∞∑
t=0

h(xj,∗t|t , u
j,∗
t|t ) + lim

t→∞
J LMPC,j
t→t+N(xjt) =

∞∑
t=0

h(xjt , u
j
t).



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 76

The above derivation holds for all disturbance realization, therefore we have that

J LMPC,j
0→N (xj0) ≥ J j

πj
(xj0).

Finally we notice that the above inequality together with Equations (6.9)-(6.10) and the
feasibility of the LMPC policy πj(·) (6.14) at the next iteration j + 1 imply that

J j
πj

(xj0) = Lj
πj

(xj0)

= max
wj0,...,w

j
N−1

N−1∑
k=0

[h(xjt , π
j(xjt)) + Lj

πj
(xjN)]

≥ max
wj0,...,w

j
N−1

N−1∑
k=0

[h(xjt , π
j(xjt)) +Qj(xjN)]

≥ J LMPC,j+1
0→N (xj0) ≥ J j+1

πj+1(x
j
0) = J j+1

πj+1(x
j+1
0 ).

Finally, we show that the domain of the LMPC (6.12) and (6.14) does not shrink at each
iteration.

Theorem 16 Consider system (6.1) in closed-loop with the LMPC (6.12) and (6.14). Let
Assumptions 7-8 hold, and initialize CS0 = O and Q0(·) = 0. If xj0 ∈ F j,∀j ≥ 1. Then,
the domain of which the LMPC defined in (6.15) does not shrink at each iteration, i.e.
F i ⊆ F j, ∀j ≥ i.

Proof The proof follows from the definition of the convex safe set. Notice that by defini-
tion (6.7) we have that CS i ⊆ CSj,∀j ≥ i. Therefore, the terminal set in (6.15) is not
shrinking at each iteration and F i ⊆ F j,∀j ≥ i.

6.5 Sampled Based Implementation

In this section, we show how to approximate the convex safe set CSj and the value function
Qj(·). At each jth iteration, we collect R roll-out of the closed-loop system, which are associ-
ated with R sampled disturbance sequences. Afterwards, we exploit these stored trajectories
to approximate the robust reachable sets (6.5) and the worst-case cost-to-go (6.9).

6.5.1 Sample-Based Convex Safe Set

We define the ith disturbance realization sequence wj
i = [wj0,i, . . . , w

j
T j ,i

], where wjt,i is the
realized disturbance at time t of the jth iteration. Furthermore, we denote the stored closed-
loop trajectory associated with the ith disturbance realization wj

i as

xj(wj
i ) = [xj0(wj

i ), . . . , x
j
T j

(wj
i )], (6.17)



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 77

where T j is the time at which the terminal goal set O is reached. The above notation
emphasizes that the realized state xjt(w

j
i ) is a function of the realized disturbance sequence

wj
i . Now, we notice that at each time t of the jth iteration the state xjt(w

j
i ) is contained into

the t-steps robust reachable set from xj0 (i.e. xjt(w
j
i ) ∈ Rt(x

j
0)). Therefore, we approximate

the t-steps robust reachable set Rt(x
j
0) using R roll-outs. In particular, for i ∈ {1, . . . , R}

sampled disturbance sequences wj
i we define the approximated t-steps robust reachable set

R̃t(x
j
0) = conv

(
R⋃
i=1

xjt(w
j
i )

)
⊆ Rt(x

j
0). (6.18)

Figure 6.2: Approximated robust reachable sets R̃t from (6.18) construct using 1000 roll-
outs. We notice that the approximated robust reachable sets R̃t are an inner approximation
the robust reachable sets Rt from (6.5).

Finally, we define the approximated safe set

S̃Sj =

{ T j⋃
t=0

R̃t(x
j
0)

}⋃
O,

which is used to construct the approximated convex safe set,

C̃Sj = conv

(
j⋃

k=0

S̃Sk
)
. (6.19)

It is important to underline that the above approximated convex safe set C̃Sj is not invariant,
as the approximated reachable sets are an inner approximation of the exact reachable sets



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 78

in Figure 6.2. Indeed, it may exist a disturbance realization which can steer the closed-loop

system (6.1) and (6.14) outside C̃Sj. In particular, given x ∈ C̃Sj there is a probability ε > 0

that the closed-loop system evolves outside C̃Sj,

Pr(Ax+Bπj(x) + w /∈ C̃Sj|x ∈ C̃Sj) ≥ ε. (6.20)

In the result section, we show that the above probability is a function of the number of roll-

outs used to construct C̃Sj. In particular as more roll-outs are collected, C̃Sj from (6.19)
better approximates the convex safe set CSj from (6.7).

6.5.2 Sample-Based Q-function

Similarly, we exploit the closed-loop data to approximate the cost-to-go function Lj
πj

(·) in

(6.9). First, we define the realized cost-to-go associated with the stored state xjt(w
i) ∈

R̃t(x
j
0) ⊆ S̃Sj,

J̃ j
k→T j(x

j
t(w

i)) =
T j∑
t=k

h
(
xjt(w

i), πj(xjt
(
wi)
))
. (6.21)

The realized cost (6.21) associated with the realized trajectory (6.17) is used to approx-
imate the worst-case cost-to-go function Lj

πj
(·), over the approximated robust reachable set

R̃t(x
j
0) from (6.18). First, we compute an hyperplane which upper-bounds the realized cost

J̃ j
k→T j(x

j
t(w

i)) for all stored states
{⋃M

i=1 x
j
t(w

i)
}
∈ R̃t(x

j
0). In particular, for time t of the

jth iteration we defined the hyperplane ajtx+ bjt , where

[ajt , b
j
t ] = argmin

a∈Rn,b∈R

M∑
i=0

||axjt(wi) + b− J̃ j
t→T j(x

j
t(w

i))||22

s.t. axjt(w
i) + b ≥ J̃ j

t→T j(x
j
t(w

i)), ∀i ∈ {0, . . . ,M}.

(6.22)

Finally at the jth iteration, the hyperplanes ajtx+ bjt are used to approximate the worst-case
cost-to-go Lj

πj
(·) from (6.9) as follows,

L̃j
πj

(x) =


+∞ If x /∈ S̃Sj

0 Elseif x ∈ O
min
k∈Kj

1R̃t(x)(a
j
tx+ bjt) Else

, (6.23)

where the set Kj = {0, . . . , T j} and the indicator function 1S(x) = x is defined over the set
S. The resulting approximated value function is defined as

Q̃j(x) = min
µ
µ | (x, µ) ∈

j⋃
k=0

conv
(
epi(L̃πj(x)j)

)
. (6.24)



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 79

Finally, we underline that the above approximated value function is not a control Lyapunov
function for system (6.1). Indeed, there is a probability γ > 0 that Equation (6.11) does not
hold and Q̃j(·) is not decreasing along the closed-loop trajectory,

Pr
(
Q̃j(Ax+Bπj(x) + w) + h(x, πj(x))− Q̃j(x) > 0

)
≥ γ. (6.25)

In the result section, we show that above probability is inversely proportional to the number
R of realized trajectories used to construct L̃j

πj
(·) from (6.23).

6.6 Examples

Finally, we test the proposed strategy on a double integrator and on the parking problem
from [13, Section 4]. We show that in both examples the LMPC is able to improve the
closed-loop performance while guarantees state and input constraints.

6.6.1 Constrained LQR Problem

We test the proposed control strategy on the following double integrator system

xt+1 =

[
1 1
0 1

]
xt +

[
0
1

]
ut + wt, (6.26)

where the the random disturbance wt is uniformly distributed on the set W = {w ∈ R2 :
||wt||∞ ≤ 0.1}. The system is subjected to the following state and input constraints, xt ∈
X = {x ∈ R2 : ||x||∞ ≤ 10} and ut ∈ U = {u ∈ R2 : ||u||∞ ≤ 1}, for all t ≥ 0.
Furthermore, we compute the minimal robust positive invariant set O for the autonomous
system xt+1 = (A + BK)xt + wt where −K is the LQR gain for Q = 1 and R = 1. Finally,
we define the stage cost h(x, u) = |x|O + |u|KO which satisfies Assumption 8.

The convex safe set CSj and value function Qj(·), used in the LMPC (6.12) and (6.14),
are approximated as described in Section 6.5. In particular at each iteration j, we use R

roll-outs to compute the approximated safe set C̃Sj and value function Q̃j(·). In order to

initialize the LMPC we set N = 3, C̃S0
= O and Q̃0(·) = 0. Finally at each jth iteration,

the initial state xj0 is computed as the furthest point along the negative x-axis which belongs
to F j. Basically, we set a = [−1, 0] in (6.16).

6.6.2 Convex Safe Set and Value Function Approximation

In this section, we construct the convex safe set C̃S1
and value function approximation

Q̃1(·) using R = 100 and R = 1000 roll-outs. Furthermore, we perform 1000 Monte-Carlo

closed-loop simulations to estimate the properties of C̃S1
and Q̃1(·).

Figure 6.3 shows the terminal set O and the approximated robust reachable sets R̃t(x
1
0),

which are used to construct the approximated convex safe set C̃Sj with R = 100 and



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 80

Figure 6.3: The approximated robust reachable sets R̃t (6.18) used to construct C̃S1
withR =

100 and R = 1000 roll-outs. Notice that the approximated convex safe set C̃S1
constructed

using 1000 roll-outs contains the one constructed using 100.

R = 1000 roll-outs. As expected, the approximated convex safe set C̃Sj constructed us-
ing 1000 trajectories contains the one constructed using 100 trajectories. As mentioned in
Section 6.5.1 (Eq. (6.20)), the approximated convex safe set is not invariant. Indeed, there

is a probability ε > 0 that, given a state x ∈ C̃S1
, the closed-loop system evolves outside

C̃S1
. In order to estimate the probability ε, we perform 1000 Monte-Carlo simulations for

the closed-loop system (6.1) and (6.14) and we compute the percentage of realized states

which evolved outside C̃Sj. As expected the probability ε decreases as more roll-outs are

used to construct C̃S1
. In particular, we have that ε ∼ 3.6% and ε ∼ 0.3% for R = 100 and

R = 1000, respectively.
Finally, we analyze how the number of roll-outs affects the approximated value function

Q̃1(·). Figure 6.4 shows the approximated value function Q̃1(·) constructed with R = 100
and R = 1000 roll-outs. First, we notice that the domain of approximated value function
Q̃1(·) is enlarged as more realized trajectories are used to compute the approximation. In-

deed, the domain of Q̃1(·) is the approximated safe set C̃S1
from Figure 6.3. Second, we

recall that Q̃1(·) is constructed based on sampled disturbance sequences and it underesti-
mates Q1(·), which considers the whole disturbance support. Therefore, we expect that as
more sample disturbance sequences are considered Q̃1(·) better approximates Q1(·). This
intuition is confirmed by Figure 6.4, we notice that Q̃1(·) constructed with 1000 trajectories



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 81

Figure 6.4: Approximated value function Q̃j(·) constructed with R = 100 and R = 1000 roll-
outs. Note that as more trajectories are used the value of Q̃j(·) increases almost everywhere,
thus it better approximated Qj(·).

upper-bounds almost everywhere the value function Q̃1(·) constructed with 100 trajectories,
therefore it better approximates Q1(·). Finally, we recall from Equation (6.25) that Q̃1(·) is
not a robust control Lyapunov function. Indeed, there is a probability γ > 0 that Q̃1(·) is
not decreasing along the realized closed-loop trajectory. In order to estimate the probability
γ, we use 1000 Monte Carlo simulations. As expected, the probability γ decreases as more
closed-loop trajectories are used to construct Q̃1(·). In particular, we have γ ∼ 10.1% and
γ ∼ 4.3% for R = 100 and R = 1000, respectively.

6.6.3 Iterative Policy Update

In this section we run the LMPC for 10 iterations. In particular, at each jth iteration we

collect R = 1000 roll-outs which are used to compute the approximated convex safe set C̃Sj

and the approximated value function Q̃j(·). We show that the LMPC is able to explore the
state space while safely steering the system to the terminal set O.

As stated in Section 6.6, at each jth iteration we compute the initial condition xj0 as
the furthest point along the negative x-axis such that Problem (6.12) is feasible. Notice
that by Theorem 16, the domain of the LMPC policy F j is enlarged at each iteration (i.e.
Fk ⊆ F j for all k ∈ {1, . . . , j}). As a result, the region of the state space from which the



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 82

Figure 6.5: For iterations j ∈ {2, 4, 8} and i = {1, . . . , 1000} disturbance realizations we
show the closed-loop trajectories xj(wj

i ) from (6.17). Furthermore, we report the initial
condition xj0 which is further from the origin at each iteration.

controller is able to safely complete the control task grows at each iteration. This fact is
highlighted in Table 6.1, where we report the initial condition xj0 as a function of the iteration
index. Furthermore, in Figure 6.5 we show 1000 realized trajectories for the 2nd, 4th and
8th iterations. We notice that at each iteration the LMPC safely operates the system over
progressively larger regions of the state space, until the closed-loop trajectory is close to
saturate the state constraints.

Table 6.1: Initial condition xj0 at each jth iteration.

x1
0 = −

[
2.00 0

]>
x6

0 = −
[
9.90 0

]>
x2

0 = −
[
5.46 0

]>
x7

0 = −
[
9.90 0

]>
x3

0 = −
[
6.86 0

]>
x8

0 = −
[
9.90 0

]>
x4

0 = −
[
9.35 0

]>
x9

0 = −
[
9.90 0

]>
x5

0 = −
[
9.90 0

]>
x10

0 = −
[
9.90 0

]>
Finally, in Figure 6.6 we report the approximated value function Q̃j(·) for the 2nd, 4th

and 8th iterations. We recall that the domain of Q̃j(·) is the approximated convex safe set

C̃Sj, which is enlarged at each iteration. Therefore, as more iterations of the control task



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 83

are executed, Q̃j(·) approximates the value function over larger regions of the state space,
as shown in Figure 6.6.

Figure 6.6: Approximated value function Q̃j at the 2nd, 4th and 8th iteration. Notice that
the domain of Q̃j is enlarged at each iteration.

6.6.4 Performance Improvement

In this section we empirically validate Theorem 15. We design a LMPC which minimizes
the stage cost h̄(x, u) = 0.1|x|O + |u|KO. Afterwards, we run the closed-loop system for 10
iterations starting from the same initial condition, xj0 = −[0, 9.9] ∀j ∈ {0, . . . , 9}. In order
to initialize the LMPC, we use a suboptimal controller which robustly steers system (6.26)
to O and we exploit the closed-loop data to initialize the approximated convex safe set and
value function.

Figure 6.7 shows the closed-loop cost J̃ j
0→T j(x

j
0(wj

i )) from (6.21) and the worst-case re-
alized cost

max
i∈{0,...,R}

J̃ j
1→T j(x

j
0(wj

i )) (6.27)

for 10 iterations. We notice that the LMPC is able to improve the worst-case realized cost
associated with the suboptimal policy used at the 0th iteration. Furthermore, we underline
that the controller performs exactly the same task at each iteration (xj0 = xi0,∀j, i ≥ 0) and
the worst-case realized cost (6.27) decreases at each iteration, until it converges within a
tolerance of 0.7% as stated in Theorem 15.



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 84

Figure 6.7: Worst-case realized cost and realized cost of the LMPC over the iteration in-
dex. We notice that the LMPC improves the worst-case realized cost from the suboptimal
controller at the 0th iteration, until it reaches convergence.

6.6.5 Parking Problem

Finally, we tested the proposed strategy on the parking example from [13, Section 3]. The
goal of this problem is to minimize the expected parking cost. There are s = n+ 1 parking
spaces. The the driver starts from the parking spot s = n + 1, and at each parking space
s it may proceed to the next parking space s− 1 or park, if the parking spot is free. If the
drivers reaches the parking spot s = 0 it has to park and pay a fee of $100. Otherwise if
the parking spot s is available, the driver can park by paying a fee of $s. The parking spots
are free with probability p and the driver knows the availability when it reaches a particular
parking location.

At iteration 0 we implemented a control policy that drives the vehicle to the garage
and pays $100 to park. We performed 1000 roll-out and we used this closed-loop data to
implement the LMPC. As in this example the goal is to minimize the expected cost, in (6.22)
we computed the hyperplane which approximates the empirical mean over each approximated
robust reachable set.

Figure 6.8 shows the steady-state LMPC policy and the associated value function. We
notice that the LMPC policy overlaps with the optimal one from [13, Section 3]. Finally,
Figure 6.9 reports the data points used to defined the approximated Q-function from (6.24).
We notice that he stored data points used to construct the Q-function are significantly lower
then the total amount of stored data points.



CHAPTER 6. LMPC FOR UNCERTAIN SYSTEMS 85

0 20 40 60 80 100 120 140 160 180 200

Parking Spot [0 = Garage]

0.8

1

1.2

1.4

1.6

1.8

2

1=
P
ar
k
if
fr
ee
,
2=

D
on

‘t
p
ar
k
if
fr
ee

Threshold value: 35

LMPC Policy
Optimal Policy

Figure 6.8: Comparison between the LMPC policy at convergence and the optimal policy
from [13, Section 3].

20 40 60 80 100 120 140 160 180 200

State

30

40

50

60

70

80

90

100

V
a
lu
e
F
u
n
ct
io
n
A
p
p
ro
x
im

a
ti
o
n

Data Processed During LMPC

Data Stored at Convergence

Figure 6.9: Stored data point needed to construct the approximated Q-function from (6.24)
and total data points processed during the iterative process.



86

Chapter 7

Feedback Policy Parametrization for
Robust LMPC

As we have discussed in the previous chapters, the LMPC computes the control action by
solving a finite time optimal control problem over a moving time window. When uncertainty
is acting on the system, the control problem is carried over a space of feedback policies.
Such space should contain the safe policies, which may be used to complete the control task
from any state into the safe set. If this condition is not verified, then the control design
is challenging. In this chapter, we proposed an adaptive prediction horizon strategy which
allows us to pick the space of feedback policies used by the LMPC independently form the
safe policies. First, we illustrate how to construct robust robust sets from historical data and
we characterized the associated safe control policies. Then, we propose an iterative LMPC
design procedure, where data generated by a robust controller at iteration j are used to
design a robust LMPC at the next j+ 1 iteration. We show that this procedure allows us to
iteratively enlarge the domain of the control policy and it guarantees recursive constraints
satisfaction, input to state stability and performance bounds for the certainty equivalent
closed-loop system. The effectiveness of the proposed control scheme is illustrated on a
linear system subject to bounded additive disturbance.

7.1 Problem Formulation

Consider the uncertain linear time-invariant system,

xjt+1 = Axjt +Bujt + wjt (7.1)

where xjt ∈ Rn and ujt ∈ Rd are the state and the input at time t of the jth iteration, and
the matrices A and B are known. The disturbances wjt are zero mean independent and
identically distributed (i.i.d.) with bounded support W .

Assumption 9 The disturbance’s support W is a compact polytope described by l vertices
{v1

w, . . . , v
l
w} and it contains the origin.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 87

Furthermore, system (7.1) is subject to the following convex constraints on states and inputs

xjt ∈ X and ujt ∈ U , ∀t ≥ 0, ∀j ≥ 0 (7.2)

for X and U compact.

7.1.1 Control Design Objectives

In this section, we describe the goals of the iterative synthesis process. At each iteration j,
our objective is to design a state-feedback policy for the uncertain system (7.1)

πj(·) : Cj ⊆ Rn → Rd, (7.3)

such that at each jth iteration and for all xj0 ∈ Cj ⊆ Rn we have that:

1. The certainty equivalent system

x̄jt+1 = Ax̄jt +Būjt (7.4)

with ujt = π(xjt) converges asymptotically to goal set O, i.e. limt→∞ x̄
j
t ∈ O.

2. The closed-loop system xjt+1 = Axjt +Bπj(xjt) +wjt is Input to State Stable (ISS) with
respect to the set O (see Section 2.2 for the definition of ISS).

3. The closed-loop state and input constraints are robustly satisfied, namely

xjt ∈ X and πj(xjt) ∈ U ,∀w
j
t ∈ W , ∀t ≥ 0.

4. The domain Cj of policy πj(·) does not shrink with the iteration index, i.e., Cj ⊆ Cj+1.

5. The iteration cost of the certainty equivalent system (7.4), defined as

J j0→∞(x̄j0) =
∞∑
k=0

h(x̄jt , π
j(x̄jt)),

is upper-bounded by a function Qj−1(·) (i.e. J j0→∞(xj0) ≤ Qj−1(xj0)), which is non-
increasing at each iteration

Qj(x̄) ≤ Qk(x̄),∀j ≥ k.

Property 5) implies that, as more data is collected, the upper-bound on the performance of
the certainty equivalent closed-loop system is non-increasing.

Throughout this chapter we make the following assumptions.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 88

Assumption 10 The set O ⊂ Rn is a robust positive invariant set for the autonomous
system xt+1 = (A − BK)xt + wt with wt ∈ W. Furthermore, O is a polyhedron defined
through its vertices {v1

o , . . . , v
m
o } and

KO = {u ∈ Rd : ∃x ∈ O, u = Kx}.

.

Assumption 11 We assume that the stage cost h(·, ·) is continuous and jointly convex in
its arguments. Furthermore, we assume that ∀x ∈ Rn,∀u ∈ Rd

αlx(|x|O) ≤ h(x, 0) ≤ αux(|x|O)

and αlu(|u|KO) ≤ h(0, u) ≤ αux(|u|KO)

where αux, α
l
x, α

u
u and αlu ∈ K∞.

Remark 8 In Assumption 10 a robust invariant O is required. In the proposed approach O
can be a very small neighborhood of the origin. In fact, the iterative nature of the control
design will enlarge the closed-loop domain of attraction at each iteration.

7.2 Preliminaries

The section describes how historical data can be used to build a robust safe set of states
from which the control task can be executed. Furthermore, we define the robust Q-function
which will be used to bound from above the performance of the proposed control strategy.
Finally, for each robust safe set we construct a safe policy which may be used to complete
the control task.

7.2.1 Robust Safe Set

We show how to iteratively construct robust control invariant sets. In particular, we run
the closed-loop system at iteration j and we exploit the closed-loop trajectory to construct
a robust safe set at the next iteration j + 1. Compared to the previous chapter, we show
how to construct robust safe sets given a feedback policy with horizon N smaller than the
task duration T j.

At iteration j = 1, let
π1
t (·) = [π1

t|t(·), . . . , π1
t+N -1|t(·)] (7.5)

be a robust N -steps policy which is applied in a receding horizon fashion to system (7.1)
and consider the resulting closed-loop system

x1
t+1 = Ax1

t +Bπ1
t|t(xt) + wt. (7.6)

Furthermore, define the robust convex safe set CS0 = O at iteration j = 0 and assume that
the following assumptions hold.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 89

Assumption 12 The closed-loop system (7.6), starting from the initial condition x1
0, reaches

the robust convex safe set CS0 = O in T 1 steps, while robustly satisfying state and input
constraints (7.2).

Assumption 13 For all t ∈ {0, . . . , T 1}, the N-steps policy π1
t (·) in (7.5) steers the pre-

dicted closed-loop system

x1
k+1|t = Ax1

k|t +Bπ1
k|t(x

1
k|t) + w1

k|t, ∀k = t, . . . , t+N − 1

from the state x1
t to the robust convex safe set CS0 = O in N-steps, while robustly satisfying

state and input constraints (7.2).

Let the vectors
[x1

0, . . . , x
1
T 1 ] and [u1

0, . . . , u
1
T 1 ] (7.7)

collect states and inputs associated with a simulation of the closed-loop system. We notice
that, by linearity of the system, any state in the convex-hull of the closed-loop trajectory
in (7.7) can be robustly steered to O. However, the convex hull of the states in (7.7) and O is
not invariant, as it does not necessarily contain the k-steps robust reachable set Rt→t+k(x

1
0)

from the staring state x1
0, as shown in Figure 7.1 (see Chapter 2 for the definition of robust

reachable sets).

Figure 7.1: Convex-hull of the stored states and O (dashed red line) and the robust reachable
sets Rt→t+k(x

j
0) (dashed blue line). We notice that the convex-hull of the stored states and

O does not contain the robust reachable sets Rt→t+k(x
j
0) and therefore it is not a robust

invariant for the closed-loop system (7.6).



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 90

Now, we notice that robust control invariant sets can be computed using k-steps robust
reachable sets Rt→t+k(x

1
0) from the stored states in (7.7). In particular, we notice that the

union of the k-steps robust reachable sets Rt→t+k(x
1
0) for k = 0, . . . , N and the robust convex

safe set CS0 = O is a robust control invariant. Therefore, we define the robust convex safe
set at iteration j = 1 as the convex hull of the N × T j robust reachable sets and the robust
convex safe set CS0 at iteration 0,

CS1 = Conv

({ T 1⋃
t=0

N⋃
k=0

Rt→t+k(x
1
t )

}⋃
CS0

)
. (7.8)

The above robust convex safe set at iteration j = 1 is shown in Figure 7.2.

Figure 7.2: Representation of the convex safe set CS1 (dashed green line) and the robust
reachable sets Rt→t+k(x

1
0) (dashed blue line).

The above process is repeated at iteration j starting from data collected at iteration j−1.
Clearly, Assumptions 12-13 must hold when CS0 is replaced with CSj−1 and iteration 1 with
j. More formally, given the N -steps policy

πjt (·) = [πjt|t(·), . . . , π
j
t+N -1|t(·)] (7.9)

and the closed-loop system
xjt+1 = Axjt +Bπjt|t(x

j
t) + wjt (7.10)

we assume that the following holds.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 91

Assumption 14 The closed-loop system (7.10), starting from the initial condition xj0, reaches
the robust convex safe set CSj−1 in T j steps, while robustly satisfying state and input con-
straints (7.2). Furthermore, for all t ∈ {0, . . . , T j}, the N-steps policy πjt from (7.9) steers
the predicted closed-loop system

xjk+1|t = Axjk|t +Bπjk|t(x
j
k|t) + wjk|t, ∀k = t, . . . , t+N − 1

from the state xjt to the robust convex safe set CSj in N-steps, while robustly satisfying state
and input constraints (7.2).

Later in Section 7.3 we will show how to synthesize a control polity πjt which satisfies
Assumption 14.

At iteration j, we exploits CSj−1 to iteratively define the convex safe set:

CSj = Conv

({ T j⋃
t=0

N⋃
k=0

Rt→t+k(x
j
t)

}⋃
CSj−1

)
. (7.11)

Details on the computation and storage of the convex safe set are provided next.

7.2.2 Robust Convex Safe Set: Vertex Representation

Recall from Assumption (10) that l denoted the number of vertices of the disturbance sup-
port. Now, we define the lk vertices of the k-step robust reachable set Rt→t+k(x

j
t ,W) from

xjt ,

[vj,lt+k|t, . . . , v
j,lk

t+k|t]. (7.12)

The vertices of the robust reachable sets Rt→t+k(x
i
t) for all the k ∈ {0, . . . , N -1}, i ∈

{0, . . . , j} and t ∈ {0, . . . , T j} are collected by the following matrix

Xj = [Xj−1, vj,10|0, . . . , v
j,lN−1

N−1|0, . . .

vj,10|t , . . . , v
j,lN−1

N−1|t , . . .

vj,1
0|T j , . . . , v

j,lN−1

N−1|T j ],

(7.13)

where at jth iteration vj,it+k|t represents the ith vertex of the robust reachable sets Rt→t+k(x
j
t).

In the above recursive definition, we set X0 = [v1
o , . . . , v

m
o ], where vio for i ∈ {1, . . . ,m} are

the vertices of O from Assumption 10.
Finally, as the columns of the matrix Xj in (7.13) collect all vertices of the robust

reachable sets Rt→t+k(x
j
t), the robust convex safe set CSj from (7.11) can be written as

CSj =
{
x ∈ Rn : ∃λj ≥ 0,Xjλj = x and 1>λj = 1

}
, (7.14)

where 1 is a vector of ones.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 92

Remark 9 Notice that the approach in this paper is based on a commonly used “vertex
enumeration approach”. Its worst case complexity is exponential in horizon N of the feedback
policy (7.9), although independent on the length of the task duration T j. We underline that
this paper focuses on the fundamental properties of the controller design. Computationally
tractability can be obtained as in any MPC scheme by using a different disturbance model or
feedback parametrization.

Remark 10 We underline that the robust safe set in (7.11) may be constructed using just
one predicted policy, i.e. setting T j = 0. In this case, the proprieties of the proposed design
still hold, and the computational complexity of constructing the convex safe set is reduced.
Clearly, this approximation will likely shrink the domain of the proposed control policy.

7.2.3 Robust Q-Function

The robust Q-function approximates the cost-to-go over the robust convex safe set and it is
constructed iteratively as explained next. At iteration j we assume that we are given the
robust Q-function Qj−1(·) which maps each state x ∈ CSj−1 to the closed-loop cost, and
we show how to construct a robust Q-function at the next iteration j. This recursion is
initialized at iteration 0 setting the robust Q-function Q0(·) = 0 and the robust convex safe
set CS0 = O.

While in the nominal case from [61] the vertices of the convex safe set are a subset
of the stored trajectory, the convex safe set from (7.11) may introduce additional vertices
representing the worst case predicted realizations. For this reason, a cost-to-go associated
with such predicted worst case realizations should be defined. In the following we defined
the cost-to-go J jt|t associated with the stored states xjt|t = xjt and predicted cost-to-go J jk|t
associated with the predicted state xjk|t at time k. In particular, after completion of the

iteration j for t ∈ {0, . . . , T j}, k ∈ {0, . . . , N − 1} and i ∈ {1, . . . , lk−1}, we compute the
cost-to-go as for the vertices vj,ik|t of CSj from Xj in (7.13) as

J jk|t
(
vj,ik|t
)

= min
γk≥0

h
(
vj,ik|t, π

j
k|t(v

j,i
k|t)
)

+
lk+j∑
r=j

γrJ jk+1|t(v
j,r
k+1|t)),

s.t.
lk+1∑
r=1

γrvj,rk+1|t = Avj,ik|t +Bπjk|t(v
j,i
k|t)

lk+1∑
r=1

γr = 1

(7.15)

for γk = [γ1, . . . , γl
k+1

] where lk+1 is the number of vertices k + 1-steps robust reachable set
Rt→t+k+1(xjt). In the above recursion we set

J jt+N |t
(
vj,it+N |t

)
= Qj−1

(
vj,it+N |t

)
. (7.16)



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 93

Basically, the cost-to-go J jk|t(v
j,i
k|t) at time k is computed summing up the running cost and

the interpolated cost-to-go at the next predicted time k + 1.
Given Qj−1(·), the cost-to-go J ik|t(·) is computed for all i ∈ {0, . . . , j}, t ∈ {0, . . . , T j}

and k ∈ {0, . . . , N -1}. Then, these cost values are collected in the following vector

Jj = [Jj−1, J j0|0
(
vj,10|0
)
, . . . , J jN−1|0

(
vj,l

N−1

N−1|0
)
, . . .

J j0|t
(
vj,10|t
)
, . . . , J jN−1|t

(
vj,l

N−1

N−1|t
)
, . . .

J j
0|T j
(
vj,1
N−1|T j

)
, . . . , J j

N−1|T j
(
vj,l

N−1

N−1|T j
)
],

where J0 = [0, . . . , 0] represents the cost-to-go associated with the vertices of O. Finally, we
define the Q-function at iteration j which interpolates the cost-to-go over the robust safe
set,

Qj(x) = min
λj∈Λj(x)

Jjλj, (7.17)

where for the matrix Xj composed of col(Xj) columns

Λj(x) =
{
λj ∈ Rcol(Xj) : λj ≥ 0, Xjλj = x and 1>λj = 1

}
(7.18)

collects the vectors λj which can be used to express x as a convex combination of the columns
of Xj.

7.2.4 Set of Safe Policies

At this point we have shown how to compute a robust invariant terminal set and a robust
cost-to-go based on data collected at previous iterations. The last missing element needed
for a MPC design is the feedback controller associated to the terminal set.

Here we show how to construct a set of safe policies SPj, which may be used to ro-
bustly constraint the evolution of system (7.1) into CSj, while satisfying state and input
constraints (7.2). We begin by presenting an implicit parametrization of the set of policies
SPj which is amenable for optimization and it can be used to design a predictive con-
troller that guarantees recursive constraint satisfaction. Afterwards, we define a safe policy
κj,∗(·) ∈ SPj, which is able to complete the task from any state into the robust convex safe
set CSj.

First, we define the matrix Uj collecting the inputs associated with the data stored
in (7.13),

Uj = [Uj−1,πj0|0
(
vj,10|0
)
, . . . , πjN−1|0

(
vj,l

N−1

N−1|0
)
, . . .

πj0|t
(
vj,10|t
)
, . . . , πjN−1|t

(
vj,l

N−1

N−1|t
)
, . . .

πj
0|T j
(
vj,1

0|T j
)
, . . . , πj

N−1|T j
(
vj,l

N−1

N−1|T j
)
]

(7.19)

where the policies πjk|t are defined in (7.5). In the above definition U0 = [−Kv1
o , . . . ,−Kvmo ],

where the feedback gain K and the vertices vio of O are defined in Assumption 10.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 94

Now, we notice that by linearity of system (7.1), if a state x ∈ CSj is expressed as a
convex combination of the stored states x = Xjλj, then the input u = Ujλj ∈ U will keep
the evolution of the system in CSj for all disturbance realizations. More formally, given the
set Λj(·) defined in (7.18), we have that ∀x ∈ CSj ⊆ X ,∀λj ∈ Λj(x)

Ujλj ∈ U and Ax+BUjλj + w ∈ CSj,∀w ∈ W .

Therefore, the set of feedback policies κj(·) : Rn → Rd

SPj =
{
κj(·) : ∀x ∈ CSj, ∃λj ∈ Λj(x), such that κj(x) = Ujλj

}
, (7.20)

guarantees that ∀κj(·) ∈ SPj the robust convex safe set CSj is a robust positive invariant
set for the closed-loop system xt+1 = Axt + Bκj(xt) + wt. This statement is formalized by
the following Proposition 6.

Proposition 6 Let Assumptions 9-11 hold. Then, for all control policy κj(·) ∈ SPj and
∀x ∈ CSj we have that

Ax+Bκj(x) + w ∈ CSj ⊆ X ∀w ∈ W

and κj(x) ∈ U .

Proof The proof can be found in Section 7.6.1 of the Appendix.

Finally, we define the safe policy

κj,∗(x) = Ujλj,∗(x) (7.21)

where λj,∗(x) is the minimizer in (7.17). Basically, the above safe policy evaluated at x is
given by the convex combination of stored inputs, for the multipliers λj,∗(x) which define
the robust Q-function at x. In the following propositions, we show that the Q-function
is a Lyapunov function for the certainty equivalent closed-loop system (7.4) and (7.21).
Furthermore, we show that the policy (7.21) in closed-loop with system (7.1) guarantees
Input-to-State Stability (ISS).

Proposition 7 Let Assumptions 9-11 hold. Consider the Q-function Qj(·) in (7.17), we
have that for all x ∈ CSj

Qj(x) ≥ h(x, κj,∗(x)) +Qj(Ax+Bκj,∗(x)) (7.22)

where κj,∗(·) is the safe policy defined in (7.21).

Proof The proof can be found in Section 7.6.2 of the Appendix.

Proposition 8 Consider the system (7.1) in closed-loop with the safe policy (7.21). Let
Assumptions 9-11 hold and assume that x0 ∈ CSj, then the closed-loop system (7.1) and
(7.21) is Input to State Stable for the robust positive invariant set O.

Proof The proof can be found in Section 7.6.3 of the Appendix.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 95

7.3 Control Design

This section introduces the iterative control design procedure. At the end of iteration j − 1,
we collect a data set of costs, inputs and states which are used to construct the robust convex
safe set and robust Q-function at iteration j− 1, as described in the Section 7.2. Finally, we
exploit these quantities to design a robust Learning Model Predictive Controller (LMPC)
for the jth iteration. The LMPC policy is able to safely execute the control task and it can
be used to collect new closed-loop data to design the controller at the next iteration j + 1.

7.3.1 LMPC Policy Synthesis

In this section, we introduce the LMPC policy. For more details on the control design choices
we refer to the discussion in Section 7.3.2 and to the properties description in Section 7.4.

We define the following optimal control problem for the state xjt ∈ Rn and the parameter
N j
t ∈ R,

CLMPC,j
t→t+N(xjt , N

j
t ) = min

Mj
t ,

λjt ,g
j
t

t+N−1∑
k=t

h(x̄jk|t, u
j
k|t(x̄

j
k|t)) +Qj−1(x̄jt+N |t) (7.23a)

s.t. (7.23b)

x̄jk+1|t = Ax̄jk|t +Bujk|t(x̄
j
k|t), (7.23c)

xjk+1|t = Axjk|t +Bujk|t(x
j
k|t) + wjk|t, (7.23d)

xjt|t = x̄jt|t = xjt , (7.23e)

xjk|t ∈ X , ujk|t(x
j
k|t) ∈ U , (7.23f)

xjt+N |t ∈ CS
j−1, (7.23g)

πd
k|t(xk|t) =

∑k−t−1
s=0 M j

ks|tw
j
s|t + gjk|t (7.23h)

κj−1
k|t (xjk|t) = Uj−1λjk|t (7.23i)

λjk|t ∈ Λj−1(xjk|t) (7.23j)

uji|t(x
j
i|t) = πd

i|t(xi|t),∀i ∈ {t, ..., t+N j
t − 1} (7.23k)

uji|t(x
j
i|t) = κj−1

i|t (xji|t),∀i ∈ {t+N j
t , ..., t+N − 1} (7.23l)

∀wjk|t ∈ W , ∀k = {t, ..., t+N − 1}

where the optimization variables are

M j
t =


0 . . .

M21|t 0 . . .

M31|t M32|t
. . .

...

 , gjt =

 gjt|t
...

gjt+N−1|t,





CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 96

λjt = [λjt|t, . . . ,λ
j
t|N−1|t]. Equations (7.23k)-(7.23l) and the parameter N j

t describe the control
policy which defines the evolution of the predicted nominal and uncertain trajectories in
(7.23c)-(7.23d). In particular, for the first N j

t predicted time steps the control policy ujk|t(·)
equals the disturbance feedback policy (7.23h), and for the last N−N j

t predicted steps ujk|t(·)
equals the safe feedback policy (7.23i)-(7.23j). Equations (7.23e)-(7.23f) represent input and
state constraints which must be satisfied robustly for all disturbance realizations. Finally,
the terminal constraint (7.23g) robustly forces xt+N |t into the robust control invariant set
CSj−1.

The finite time optimal control problem (7.23) is used to define the LMPC algorithm
described in Algorithm 1. Given the measured state xjt , Algorithm 1 solves N + 1 instances
of Problem (7.23) and it returns the control policy uj,∗t (·) = [uj,∗t|t (·), . . . , u

j,∗
t+N−1|t(·)] and the

LMPC cost J LMPC,j
t→t+N(xjt). Then, we apply to system (7.1)

ujt = uj,∗t|t (xt). (7.24)

Algorithm 1 is resolved at time t + 1, based on the new state xt+1|t+1 = xjt+1, yielding a
moving or receding horizon control strategy.

Algorithm 1: LMPC Algorithm

Given xjt
Set N j,∗

t = argminNj
t ∈{0,...,N}

CLMPC,j
t→t+N(xjt , N

j
t )

Let uj,∗t (·) = [uj,∗t|t (·), . . . , u
j,∗
t+N−1|t(·)] be the optimal solution to problem

CLMPC,j
t→t+N(xjt , N

j,∗
t )

Set J LMPC,j
t→t+N(xt) = minNj

t ∈{0,...,N}
CLMPC,j
t→t+N(xjt , N

j
t )

Return uj,∗t (·) and J LMPC,j
t→t+N(xjt)

7.3.2 Design Choices

In standard robust MPC at each time step we a solve an optimal control problem over a
fixed space of feedback policies. On the other hand, in Problem (7.23) the space of feedback
policies changes as a function of the predicted time step k. Indeed, the predicted trajectory is
computed using a disturbance feedback policy for k ≤ N j

t and a safe feedback policy (7.23i)-
(7.23j) for k > N j

t . In the following we discuss why this strategy allows us to guarantee
recursive constraint satisfaction.

Recall that in predictive control recursive constraint satisfaction is ensured using a ter-
minal constraint set. In particular, the terminal constraint set should be (robust) control
invariant, for a feedback policy that can be used by the (robust) MPC to forecast the evo-
lution of the system [10]. Notice that a disturbance feedback policy (or equivalently an
affine state feedback policy [19]) may not be able to robustly constraint the evolution of the
system into the terminal constraint set CSj. For this reason, in Problem (7.23) we used a
time-varying feedback policy, which is defined by the parameter N j

t , and in Algorithm 1 we



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 97

solved Problem (7.23) for different values of N j
t . This strategy guarantees that the safe policy

can be used to robustly constraint the evolution of the predicted system into the robust safe
set CSj, and it is used in Theorem 17 to show that the LMPC (7.23) and (7.24) guarantees
recursive feasibility.

Finally, we comment on the computational tractability of the proposed strategy. As
already mentioned, Algorithm 1 solves N + 1 instances of Problem (7.23) to forecast the
evolution of the system using either the disturbance feedback policy or the safe policy from
Section 7.2.4. We underline that these N + 1 optimal control problems are independent
and can be solved in parallel. Therefore, when parallel computing is available, the online
computational complexity of the proposed strategy is independent on the controller horizon.

7.4 Properties

In this section we show that the LMPC policy (7.24) satisfies our design requirements from
Section 7.1.1.

7.4.1 Recursive Feasibility

We show that if Problem (7.23) is feasible at time t = 0 for some N j
0 ∈ {0, . . . , N}, then

the LMPC policy (7.24) guarantees that state and input constraints are recursively satisfied.
More precisely, we show that if xj0 ∈ Cj, where

Cj = {x ∈ Rn : ∃N j
0 ∈ {0, . . . , N}, C

LMPC,j
0→N (x,N j

0 ) <∞} (7.25)

collects the states from which Problem (7.23) is feasible for some N j
0 ∈ {0, . . . , N}, then

Problem (7.23) is feasible for all time t ≥ 1 for some N j
t ∈ {0, . . . , N}.

Theorem 17 Consider the closed-loop system (7.1) and (7.24). Let Assumptions 9-11 hold
and xj0 ∈ Cj. Then, for all time t ≥ 0 the Problem (7.23) is feasible for some N j

t ∈
{0, . . . , N}, and the closed-loop system (7.1) and (7.24) satisfies state and input constraints.

Proof Assume that at time t Problem (7.23) is feasible for some N j
t ∈ {0, . . . , N}. At the

next time t + 1, by Proposition 6 we that, for κj−1,∗(·) ∈ SPj−1, the following candidate
policy

[uj,∗t+1|t(·), . . . , u
j,∗
t+N−1|t(·), κ

j−1,∗(·)] (7.26)

is feasible for the Problem (7.23) for some N j
t+1 ∈ {0, . . . , N}.

By assumption we have that the Problem (7.23) is feasible at time t = 0 for some N j
0 ∈

{0, . . . , N}. Furthermore, we have shown that if Problem (7.23) is feasible for some N j
t ∈

{0, . . . , N} at time t, then Problem (7.23) is feasible for some N j
t+1 ∈ {0, . . . , N} at t + 1.

Therefore by induction we conclude that for all time t ≥ 0 Problem (7.23) is feasible for
some N j

t ∈ {0, . . . , N} and the closed-loop system (7.1) and (7.24) satisfies state and input
constraints (7.2).



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 98

7.4.2 Input to State Stability (ISS)

In this section we show that the closed-loop system (7.1) and (7.24) is ISS with respect to
O. We recall that in standard MPC strategies the finite time optimal control problem can
be reformulated as a parametric QP. This fact is used in [19] to show smoothness of the
value function and then to prove ISS. In the proposed approach, the value function from
Algorithm 1

J LMPC,j
t→t+N(xt) = minNj

t ∈{0,...,N}
CLMPC,j
t→t+N(xjt , N

j
t )

is not given by the solution to a parametric Quadratic Program (QP). Therefore, smoothness
cannot be guaranteed, and the standard technique from [19] cannot be used to prove ISS.
Instead, we introduce the standard definition of dissipative-form ISS-Lyapunov function for
the robust invariant set O [17, 21] and we show that the cost of the LMPC J LMPC,j

t→t+N(xt) is a
ISS-Lyapunov function.

Definition 16 A dissipative-form ISS-Lyapunov function for the closed-loop system (7.1)
and (7.24) and the invariant set O is a function V : Rn → R≥0 such that there exists
α1, α2, α ∈ K∞ and σ ∈ K so that for all x ∈ Rn and w ∈ Rm,

α1(|x|O) ≤ V (x) ≤ α2(|x|O) (7.27a)

V (Ax+Bπj(x) + w)− V (x) ≤ −α(|x|O) + σ(||w||). (7.27b)

Notice that, as in [21], no assumptions on the continuity of V (·) are required. However
(7.27a) implies that V (·) is continuous on the boundary of O. The above definition can
be used to show that the closed-loop system (7.1) and (7.24) is ISS with respect to the set
invariant set O, as described by the following proposition.

Proposition 9 The following statements are equivalent:

• The closed-loop system (7.1) and (7.24) is ISS with respect to the robust invariant set
O.

• There exists a dissipative-form ISS-Lyapunov function V (·).

Proof The proof follows from [21, Theorem 2.3] substituting |x| with |x|O. Note that we can
replace |x| with |x|O as by (7.27a) we have that V (x) = 0 iff |x|O = 0.

Proposition 10 Let Assumptions 9-11 hold and xjt ∈ Cj. We define closed-loop system
dynamics

f jt (xjt , w
j
t ) = Axt +Buj,∗t|t (x

j
t) + wjt ,

where uj,∗t|t (·) is the optimal policy from Algorithm 1. Then there exists L > 0 such that

J LMPC,j
t+1→t+1+N(f jt (xjt , w

j
t ))−J

LMPC,j
t→t+N(xjt)

≤ −α(|xjt |O) + L||wjt ||,

∀t ≥ 0, ∀wjt ∈ W and α ∈ K∞.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 99

Proof The proof can be found in Section of the Appendix

The above propositions allow us to prove that the closed-loop system (7.1) and (7.24) is
ISS with respect to O.

Theorem 18 Consider the closed-loop system system (7.1) and (7.24). Let Assumptions 9-
11 hold and assume that x0 ∈ Cj, then the closed-loop system (7.1) and (7.24) is Input to
State Stable (ISS) for the robust positive invariant set O.

Proof First we show that the set O is robust positive invariant for the closed-loop sys-
tem (7.1) and (7.24). Assume that at time t of iteration j the state xjt ∈ O and recall that
the disturbance feedback policy (7.23h) is equivalent to state feedback policy [19], then we
have that the candidate policy

[uj,∗t|t (x) = −Kx, . . . , uj,∗t+N−1|t(x) = −Kx]

is feasible at t of the jth iteration for N j
t = N . Now we notice that the cost associated with the

above feasible policy is zero. Therefore, we have that ujt = uj,∗t|t (x
j
t) = −Kxjt , which together

with Assumption 10 implies that closed-loop system xjt+1 = Axjt +Buj,∗t|t (x
j
t) +wjt ∈ O, ∀w

j
t ∈

W and that O is robust positive invariant for the closed-loop system (7.1) and (7.24).
We notice that LMPC cost from Algorithm 1 is time-invariant and we replace J LMPC,j

t→t+N(·) with

J LMPC,j
0→N (·). Furthermore, Assumption 11 and (7.23a) imply the existence of α1, α2 ∈ K∞ such

that ∀xt ∈ Cj
α1(|xt|O) ≤ h(xt, 0) ≤ J LMPC,j

0→N (xt) ≤ α2(|xt|O). (7.28)

Finally, from Proposition 10, we have that ∀xt ∈ Cj

J LMPC,j
0→N (Axt +Buj,∗t|t (xt) + wt)− J LMPC,j

0→N (xt)

≤ −α(|xt|O) + σ(||wt||2)

and therefore J LMPC,j
0→N (·) is a ISS-Lyapunov function and the closed-loop system (7.1) and (7.24)

is Input to State Stable for the robust positive invariant set O.

7.4.3 Performance Bound

Finally, we show that whenever xj0 ∈ CSj−1 the robust Q-function at iteration j − 1 can
be used to upper-bound the performance of the certainty equivalent system at the next jth
iteration.

Theorem 19 Consider the certainty equivalent system (7.4) in closed-loop with the LMPC
(7.23) and (7.24). Let Assumptions 9-11 hold and xj0 ∈ CSj−1 ⊆ Cj, then we have that the



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 100

iteration cost of the certainty equivalent closed-loop system (7.4) and (7.24) is upper-bounded
by the Q-function constructed at the previous iteration,

J j0→∞(xj0) =
∞∑
t=0

h
(
x̄jt , u

j,∗
t|t (x̄

j
t)
)
≤ Qj−1(xj0) (7.29)

where uj,∗t|t (·) given by Algorithm 1.

Proof By Proposition 7 we have that

Qj−1(x̄j0) ≥ h(x̄j0, κ
j−1,∗(x̄j0)) +Qj−1(x̄j1)

≥ h(x̄j0, κ
j−1,∗(x̄j0)) + h(x̄j1, κ

j−1,∗(x̄j1))

+Qj−1(x̄j2)

≥
N−1∑
k=0

h(x̄jt , κ
j−1,∗(x̄jt)) +Qj−1(x̄j

Nj
0

)

≥ J LMPC,j
0→N (x̄j0),

(7.30)

where the last inequality hold by the feasibility of safe policy from Section 7.2.4 for xj0 ∈
CSj−1 ⊆ Cj.
Now consider the LMPC cost at time t, by Proposition 7 we have that

J LMPC,j
t→t+N(x̄jt) =

t+N−1∑
k=t

h(xj,∗k|t, u
j,∗
k|t(x

j,∗
k|t)) +Qj−1(xj,∗t+N |t)

≥
t+N−1∑
k=t

h(xj,∗k|t, u
j,∗
k|t(x

j,∗
k|t)) + h

(
xj,∗t+N |t, κ

j−1,∗(xj,∗t+N |t))
+Qj−1

(
Axj,∗t+N |t +Bκj−1,∗(xj,∗t+N |t))

= h(xj,∗t|t , u
j,∗
t|t (x

j,∗
t|t )) +

t+N−1∑
k=t+1

h(xj,∗k|t, u
j,∗
k|t(x

j,∗
k|t))

+ h
(
xj,∗t+N |t, κ

j−1,∗(xj,∗t+N |t))
+Qj−1

(
Axj,∗t+N |t +Bκj−1,∗(xj,∗t+N |t))

≥ h(x̄jt , u
j
t) + J LMPC,j

t+1→t+1+Nj
t+1

(Ax̄jt +Bujt),

which implies that the LMPC cost is decreasing over the closed-loop trajectory of the certainty
equivalent closed-loop system,

J LMPC,j
t+1→t+1+N(x̄jt+1)− J LMPC,j

t→t+N(x̄jt) ≤ −h(x̄jt , u
j
t).



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 101

By Theorem 18 and Definition 15 we have that the certainty equivalent system asymptotically
converges to O. Therefore, using the above equation recursively and the convergence of the
certainty equivalent system to O, we have that

J LMPC,j
0→N (x̄j0) ≥

∞∑
k=0

h(x̄j0, u
j
0) + lim

t→∞
J LMPC,j
t→t+N(x̄jt)

=
∞∑
k=0

h(x̄j0, u
j
0).

Finally, from the above expression and equation (7.30) we have that

Qj−1(xt0) ≥ J LMPC,j
0→N (x̄j0) ≥

∞∑
k=0

h(x̄j0, u
j
0) = J j0→∞(xj0).

7.5 Examples

We test the proposed controller on a system subject to bounded additive uncertainty. First,
we show that the proposed strategy is able to improve the performance of a system executing
an iterative task. Afterwards, we show that the proposed LMPC can be used to iteratively
construct a robust convex safe set CSj, which is defined over progressively larger regions of
the state space. Finally, we show that the data collected by the LMPC can be exploited to
construct the safe policy κj,∗ from Section 7.2.4. In particular, we show that this safe policy
κj,∗ robustly steers the uncertain system from any state into the robust safe set CSj to the
goal set O.

We consider the following double integrator system

xt+1 =

[
1 1
0 1

]
xt +

[
0
1

]
ut + wt,

where wt ∈ {w ∈ R2 : ||w||∞ ≤ 0.1}, subject to the following constraints xt ∈ X = {x ∈ R2 :
||x||∞ ≤ 10} and ut ∈ U = {u ∈ R : ||u||∞ ≤ 1} for all time instant t ≥ 0. Furthermore, we
define the running cost h(x, u) = 10|x|O + |u|KO, which satisfies Assumption (11).

7.5.1 Iterative Task

We use the LMPC (7.23) and (7.24) to iteratively regulate the system from x0 = [5.656; 0]
to the robust invariant set O. We use a robust MPC to perform the 0th iteration and to
construct the robust safe set CS0 and the robust Q-function Q0(·), which are used to initialize
the LMPC with N = 3.

We perform 4 iterations of the control task for the certainty equivalent system. At each
jth iteration, we store the LMPC predicted policy and the closed-loop data in order to



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 102

Figure 7.3: Comparison between the robust safe set and Q-function at the first and last
iteration.

construct the robust safe set CSj and the robust Q-function Qj(·). Table 7.1 shows that the
closed-loop cost of the certainty equivalent system decreases, until it converges to a steady
state value after 4 iterations.

Table 7.1: Closed-loop cost J j0→∞(x0) for iteration i ∈ {0, . . . , 4}.

i = 0 i = 1 i = 2 i = 3 i = 4
863.4245 827.9588 827.9380 827.9371 827.9371

Finally, in Figure 7.3 we compare the robust safe set and the robust Q-function at the first
and last iteration. First, we notice that the robust safe set, which represents the domain
of the Q-function, is enlarged. Furthermore, we confirm that Qj(·) is non-increasing (i.e.
Q1(x) ≤ Q5(x),∀x ∈ CS5) and therefore it guarantees better bounds on the performance of
certainty equivalent closed-loop system (7.4) and (7.24), as shown in Theorem 19.

7.5.2 LMPC Domain Enlargement

We show that the domain of the LMPC policy may be iteratively enlarged. At each iteration,
we simulate the uncertain closed-loop system (7.1) and (7.24) and we store both the closed-
loop data and the predicted LMPC policy from Algorithm 1. These stored data are used to
construct the robust safe set CSj and robust Q-function as described in Section 7.2.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 103

Figure 7.4: Evolution of the robust Q-function Qj through the iterations. Notice that Qj(·)
(in blue) is lower-bounded by Qj+1(·) (in red) for all i ∈ {3, 5, 7, 11}, unitl convergence is
reached and Q11(·) = Q12(·).

Notice that by definition (7.11) CSj ⊆ CSj+1 therefore the set of states which can be
steered to O by the LMPC (7.23) and (7.24) does not shrink (i.e. Cj ⊆ Cj+1). At each
jth iteration, we compute the initial condition xj0 as the furthest point along the positive or
negative x-axis from which the LMPC is feasible. More formally, at each the jth iteration
the initial state xj0 is determined solving the following convex optimization problem

xj0 = arg min
x∈Cj
bx=0

ajx

where the row vectors aj = [(−1)j, 0] ∈ R2, b = [0, 1] ∈ R2 and Cj is defined in (7.25).
Figure 7.5 shows that the robust convex safe set CSj grows at each iteration until it

converges to a set which saturates the state constraints. We underline that the closed-loop
data used to enlarge CSj are generated by the LMPC, which steers the system to regions
of the state space associated with low cost values. In other words, the growth of the robust
safe set is cost-driven. More importantly, the iterative enlargement of the CSj is performed



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 104

safely. Indeed, the LMPC guarantees robust state and input constraints satisfaction at each
iteration.

Figure 7.5: Evolution of the robust safe set through the iterations

Figure 7.6: Closed-loop trajectories for different disturbance realizations.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 105

Figure 7.4 shows the growth of the Q-function Qj(·), which is non-increasing through the
iterations. It is important to underline that Qj(·) is piece-wise affine as it is the solution to a
parametric LP [10]. Furthermore, we notice that Qj(·), which upper-bounds the closed-loop
cost of the disturbance-fee system, resembles a quadratic function. This result makes sense as
the optimal value function for this problem is piece-wise quadratic [10]. Finally, Figure 7.6
shows 100 Monte Carlo simulations of the closed-loop system for the 12th iteration. We
notice that the closed-loop trajectories satisfy state constraints and converge to the goal set
O, regardless of the disturbance realization.

7.5.3 Exploiting the safe policy

Finally, we use the stored data from the previous Section 7.2.4 to construct the safe pol-
icy (7.21). We tested this policy for 1000 Monte Carlo simulations, where we randomly
sampled the initial condition x0 from the robust convex safe set CS12. We confirm that, for
all initial conditions x0 ∈ CS12 and disturbance realization, the safe policy (7.21) steered the
system to the goal set O, as shown in Figure 7.7.

Figure 7.7: Closed-loop trajectories for different disturbance realizations and initial condi-
tions.

Finally, we compare the performance of the uncertain system (7.1) in closed-loop with
the safe policy (7.21) and the LMPC (7.23) and (7.24). In particular, we simulated both the
closed-loop system (7.1) and (7.21) and the closed-loop system (7.1) and (7.24) for the same
random initial condition x0 ∈ CS12 and disturbance realization. As reported in Table 7.2, on
average it takes ∼ 5ms to evaluate the safe policy (7.21) and ∼ 4.6s to evaluate the LMPC



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 106

policy (7.24). This result is expected as the safe policy (7.21) is evaluated solving a LP and
the LMPC policy (7.24) solving N+1 = 4 QPs. On the other hand, it is interesting to notice
that the closed-loop cost associated with safe policy (7.21) is on average ∼ 3% higher than
the cost associated with the LMPC policy (7.24), as shown in Table 7.2. This result suggests
that, in applications where the computational power is not always available, one can first use
the proposed LMPC to iteratively construct a large robust convex safe set CSj and robust Q-
function Qj. Afterwards, these quantities can be exploited to synthesis a safe control policy,
which at the cost of slickly worse performance is able reduce the computational burden.

Table 7.2: Performance of the LMPC policy (7.24) and the safe policy (7.21) in closed-loop
with the uncertain system (7.1).

Average solver time Average closed-loop cost

LMPC 4.6s 77.1
Safe Policy 5ms 80

7.6 Appendix

7.6.1 Proof of Proposition 6

The proof follows from linearity of system (7.1) and convexity of the constraint set (7.2). By
Assumption 13 we have that for all vit(x

j
t) collected in the columns of the matrix Xj in (7.13)

Avit(x
j
t) +Bπjk|t(v

i
t(x

j
t)) + w ∈ CSj ⊆ X , ∀w ∈ W .

The above equation implies that ∀x ∈ CSj and ∀λj ∈ Λ(x)

AXjλj +BUjλj + w ∈ CSj,∀w ∈ W .

By definition ∀λj ∈ Λ(x) and κj(·) ∈ SPj, we have that x = Xjλj and κj(x) = Ujλj.
Consequently, from the above equation we have that ∀x ∈ CSj and κj(·) ∈ SPj

Ax+Bκj(x) + w ∈ CSj,∀w ∈ W .

�

7.6.2 Proof of Proposition 7

Recall that we initialized CS0 = O and Q0(x) = 0 ∀x ∈ CS0, then we trivially have that

Q0(x) ≥ h(x, κ0,∗(x)) +Q0(Ax+Bκ0,∗(x)),∀x ∈ CS0.



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 107

Now, we show that ∀j ≥ 1 and ∀x ∈ CSj−1

Qj(x) ≥ h(x, κj,∗(x)) +Qj(Ax+Bκj,∗(x)).

Let x ∈ CSj then we have
Qj(x) = (Jj)>λ∗,j. (7.31)

Now notice that by definitions (7.15)-(7.16) each element of Jj can be written as

J jk|t
(
vik(x

j
t)
)

= h
(
vik(x

j
t), π

j
k|t(v

i
k(x

j
t))
) lk+1∑
r=1

γr,∗J jk+1|t(v
r
k+1(xjt))

≥ h
(
vik(x

j
t), π

j
k|t(v

i
k(x

j
t))
)

+Qj
(
Avik(x

j
t) +Bπjk|t(v

i
k(x

j
t))
)
.

(7.32)

Convexity of h(·, ·), Qj(·) and Equation (7.32) imply that

Qj(x) = Jjλ∗,j ≥ h

(


v0
0(x0

0)
...

vik(x
j
t)

...

vl
N-1

N -1 (xj
T j

)

λ
j,∗,



π0
0|0(v0

0(x0
0))

...

πjk|t(v
i
k(x

j
t))

...

πj
N -1|T j(v

lN-1

N -1 (xj
T j

))

λ
j,∗

)

+



Qj(Av1
0(x0

0) +Bπ0
0|0
(
v1

0(x0
0)
)

...

Qj(Avik(x
j
t) +Bπjk|t

(
vik(x

j
t)
)

...

Qj(Avl
N

N (xj
T j

) +Bπj
N -1|T j

(
vl
N-1

N -1 (xj
T j

)
)

λ
∗,j

≥ h
(
Xjλj,∗,Ujλj,∗

)
+Qj(Xjλ̃j,∗),

(7.33)

for some λ̃j,∗ such that

Xjλ̃j,∗ =



Av1
0(x0

0) +Bπ0
0|0
(
v1

0(x0
0)
)

...

Avik(x
j
t) +Bπjk|t

(
vik(x

j
t)
)

...

Avl
N-1

N -1 (xj
T j

) +Bπj−1
N -1|T j

(
vl
N-1

N -1 (xj
T j

)
)

λ
j,∗.

The above equation implies that

Qj(x) ≥ h
(
Xjλj,∗,Ujλj,∗

)
+Qj(Xjλ̃j,∗)

≥ h(Xjλj,∗,Ujλj,∗) +Qj(AXjλj,∗ +BUjλj,∗)



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 108

Finally, we notice that by definition (7.21) κj,∗(x) = Ujλj,∗, therefore the above equation
can be rewritten as

Qj(x) ≥ h(x, κj,∗(x)) +Qj(Ax+Bκj,∗(x)).

�

7.6.3 Proof of Proposition 8

First we show that the set O is robust positive invariant for the closed-loop system (7.1)
and (7.21). Assume that at time t of iteration j the state xjt ∈ O, be definitions (7.13),
(7.15), (7.17) and (7.21) we have that Qj(xjt) = 0 and κj,∗(xjt) = −Kxjt . Therefore, by
Assumption 10 we have that closed-loop system xjt+1 = Axjt +Bκj,∗(xjt) +wjt ∈ O, ∀w

j
t ∈ W

and that O is robust positive invariant for the closed-loop system (7.1)-(7.21).
We notice that Assumption 11 and (7.23a) imply the existence of α1, α2 ∈ K∞ such that
∀xt ∈ CSj

α1(|xt|O) ≤ h(xt, 0) ≤ Qj(xt) ≤ α2(|xt|O). (7.34)

Now we notice that Qj(·) is Lipschitz as it is the solution to a parametric LP [10]. Finally,
from Proposition 10 and Lipschitz continuity of Qj(·) for a Lipschitz constant L, we have
that ∀xt ∈ CSj

Qj(Axt +Bκj,∗(xt) + wt)−Qj(xt) = Qj(Axt +Bκj,∗(xt) + wt)−Qj(Axt +Bκj,∗(xt))

+Qj(Axt +Bκj,∗(xt))−Qj(xt)

≤ L||wt||2 +Qj(Axt +Bκj,∗(xt))−Qj(xt)

≤ L||wt||2 − h(xt, κ
j,∗(xt)).

Therefore Qj(·) is a ISS-Lyapunov function according with Definition 15 and by Proposition 9
the closed-loop system (7.1) and (7.21) is Input to State Stable for the robust positive
invariant set O. �

7.6.4 Proof of Proposition 10

By assumption xjt ∈ Cj, therefore by Theorem 17 Problem (7.23) is feasible at time t for
some N j

t ∈ {0, . . . , N} and the LMPC Algorithm 1 returns the optimal policy uj,∗t (·) and
optimal cost J LMPC,j

t→t+N(xjt). At time t, let

[x̄j,∗t|t , . . . , x̄
j,∗
t+N |t]

the optimal trajectory of the certainty equivalent system associated with the optimal policy
uj,∗t (·). Then, the LMPC cost from Algorithm 1 at time t can be written as

J LMPC,j
t→t+N(xjt) =

t+N−1∑
k=t

h(x̄j,∗k|t, u
j,∗
k|t(x̄

j,∗
k|t)) +Qj−1(x̄j,∗t+N |t)

= h(x̄j,∗t|t , u
j,∗
t|t (x̄

j,∗
k|t)) + p(x̄j,∗t+1|t)

(7.35)



CHAPTER 7. FEEDBACK POLICY PARAMETRIZATION FOR ROBUST LMPC 109

where the function p(x̄j,∗t+1|t), which represents the total cost from time t + 1 to time t + N

for the optimal policy uj,∗t (·), is Lipschitz as it is composed of summation and composition
of Lipschitz functions. Now we notice that by feasibility of (7.26) the cost of the LMPC at
time t+ 1 can be upper-bounded,

J LMPC,j
t+1→t+1+N(f(xt, wt)) ≤

t+N−1∑
k=t+1

h
(
x̄jk|t+1, u

∗,j
k|t(x̄

j
k|t+1)

)
+ h
(
x̄jt+N |t+1, κ

j−1,∗(x̄jt+N |t+1)
)

+Qj−1
(
Ax̄jt+N |t+1 +Bκj−1,∗(x̄jt+N |t+1)

)
≤

t+N−1∑
k=t+1

h
(
x̄jk|t+1, u

∗,j
k|t(x̄

j
k|t+1)

)
+Qj−1

(
x̄jt+N |t+1

)
= p(x̄jt+1|t+1)

(7.36)

where the last inequality follows from Proposition 7 and the feasible nominal trajectory is
given by

x̄jk|t+1 = Ak−t−1(Axt +Bu∗,jt|t (xt) + wt) +
k−1∑
i=t+1

Ak−1−iBu∗,ji|t (x̄jk|t+1)

for k = {t+ 2, . . . , t+N}. Finally, we notice that

x̄jt+1|t+1 = Axjt +Bu∗,jt|t (xjt) + wjt = x̄j,∗t+1|t + wjt , (7.37)

∀wjt ∈ W . Therefore, from the Lipschitz continuity of p(·), (7.35), (7.36) and (7.37) we have
that

J LMPC,j
t+1→t+1+N(f(xjt , w

j
t ))− J

LMPC,j
t→t+N(xjt) = p(x̄j,∗t+1|t + wt)− p(x̄j,∗t+1|t)− h(x̄∗,jt|t , u

∗,j
t|t (xjt))

≤ −h(x̄∗,jt|t , u
∗,j
t|t (xjt)) + L||wjt ||

≤ −h(x̄∗,jt|t , 0) + L||wjt ||

≤ −αlx(x
j
t) + L||wjt ||,

(7.38)

∀wjt ∈ W , where the last inequality holds by Assumption 11. �



110

Chapter 8

Certainty Equivalent Learning Model
Predictive Control

In the previous chapters, we presented two robust LMPC design strategies. The compu-
tational burden associated with these strategies increases with the respect to the nominal
case, as the controller forecasts the evolution of the system using feedback policies. In this
chapter, we first introduce a decoupling strategy, which allows us to represent the uncertain
system as the summation of a certainty equivalent and an error dynamics. Then, we propose
a robust LMPC policy which exploits the certainty equivalent system to predict a nominal
trajectory and the error dynamics to guarantee robust constraint satisfaction. The main
advantage of proposed strategy is that the on-line computational cost does not increase with
respect to the nominal case. Nonetheless, we show that robust constraint satisfaction and
performance improvement properties for the closed-loop system.

8.1 Problem Statement

In this section, we illustrate the linear change of coordinates that allows us to represent
the uncertain system as the summation of a certainty equivalent and an error dynamics.
Afterwards, we introduce the robustified infinite horizon optimal control problem, which is
used to define a feedback policy that guarantees robust constraint satisfaction.

8.1.1 The Certainty Equivalent System

Consider the uncertain linear time-invariant systems

xt+1 = Axt +But + wt (8.1)

where at time t the state xt ∈ Rn, the input ut ∈ Rnu , and the matrices A and B are known.
At each time step t, the system is affected by a random disturbance wt ∈ W , where W is



CHAPTER 8. CERTAINTY EQUIVALENT LMPC 111

assumed to be a known compact polytope that contains the origin. We consider the state
and input constraints

xt ∈ X and ut ∈ U (8.2)

which must be satisfied for all uncertainty realizations wt ∈ W and for all t ≥ 0..
In the following, we show that the uncertain system 8.1 may be decoupled into a nominal

and uncertain error dynamics [81, 82]. First, we introduce the following certainty equivalent
system and associated feedback policy

x̄t+1 = Ax̄t +Būt

π(xt) = −K(xt − x̄t) + ūt
(8.3)

where xt is the state of system (8.1). The above certainty equivalent dynamics allows us to
define the error at time t as

et = xt − x̄t. (8.4)

Finally, using (8.3) and (8.4), we rewrite (8.1) as

x̄t+1 = Ax̄t +Būt

et+1 = (A−BK)et + wt.
(8.5)

Next, we assume that we are given a robust invaraint set E for the error dynamics and
we present the constraint robustification strategy.

Assumption 15 The set E is a robust positive invariant set for the error dynamics,

∀e ∈ E , (A−BK)e+ w ∈ E ,∀w ∈ W ,

and U ⊇ −KE = {−Ke ∈ Rd : e ∈ E}.

The above assumption implies that if e0 belongs to some given set E , then et belongs to
the set E for all wt ∈ W and t ≥ 0. Moreover, from (8.5), it follows that xt = x̄t+et ∈ x̄t⊕E
and ut = −Ket + ūt ∈ {−KE} ⊕ ūt. This fact allows us to robustly enforce state and input
constraints on xt and ut through the following constraints on the certainty equivalent system

x̄t ∈ X̄ = X 	 E
ūt ∈ Ū = U 	 {−KE},∀t ≥ 0.

(8.6)

Indeed, if e0 ∈ E and (8.6) is satisfied we have that

xt = x̄t + et ∈ X̄ ⊕ E = X ,
ut = −Ket + ūt ∈ {−KE} ⊕ Ū = U , ∀t ≥ 0,∀wt ∈ W .

(8.7)



CHAPTER 8. CERTAINTY EQUIVALENT LMPC 112

8.1.2 Robustified Infinite Horizon Optimal Control Problem

In this section, we introduce the robustified infinite horizon optimal control problem. In
particular, we exploit the linear change of coordinates presented in the previous section
to reformulate the robust constraints as a deterministic one. Finally, we show that the
optimal solution to the robustified problem defines a feedback policy which guarantees robust
constraint satisfaction.

Our goal is to synthesize a feedback policy which guarantees recursive robust constraint
satisfaction for the closed-loop system. The key idea is to exploit invariance of the set E
and the decoupling strategy presented in the previous section. In particular, we define the
following infinite time optimal control problem

J∗0→∞(xS) = min
x̄0,ū0,ū1,...

∞∑
t=0

h(x̄t, ūt)

s.t. x̄t+1 = Ax̄t +Būt,∀t ∈ {0, 1, . . .}
x̄t ∈ X̄ , ūt ∈ Ū ,∀t ∈ {0, 1, . . .}
xS − x0 ∈ E .

(8.8)

Let [x̄∗0, ū
∗
0, ū
∗
1, . . .] be the optimal optimal solution to (8.8) and [x∗0, x̄

∗
1, . . .] the associated

certainty equivalent closed-loop trajectory. Then it follows from 8.6 that the feedback policy

π(xt) = −K(xt − x̄∗t ) + ū∗t (8.9)

guarantees robust state and input constraint satisfaction.
In the following, we introduce a certainty LMPC strategy to iteratively compute a solu-

tion to the above infinite time optimal control problem. We show that the certainty LMPC
policy guarantees iterative performance improvement and recursive robust constraint satis-
faction. The main advantage of the strategy presented in this chapter is that the on-line
computational cost does not increase with respect to the nominal case.

8.2 Controller Design

This section describes the controller design. First, we introduce the definition of safe set
and Q-function for the certainty equivalent system (8.3), which follows from Chapter 4.
Afterwards, we present the controller design.

8.2.1 Convex Safe Set

In this section, we define the safe set for the certainty equivalent system. At iteration j, let
the vectors

ūj = [ūj0, ū
j
1, ..., ū

j
t , ...], (8.10a)

x̄j = [x̄j0, x̄
j
1, ..., x̄

j
t , ...], (8.10b)



CHAPTER 8. CERTAINTY EQUIVALENT LMPC 113

denote the input and state of certainty equivalent system (8.3). To exploit the iterative
nature of the control design, we define the sampled Safe Set SSj at iteration j as

SSj =

{ ⋃
i∈Mj

∞⋃
t=0

x̄it

}
, (8.11)

where M j ⊆ {0, . . . , j} is the set of indices associated with successful iterations, i.e.,

M j =
{
k ∈ [0, j] : lim

t→∞
x̄kt = 0

}
.

In other words, SSj is the collection of all nominal state trajectories up to iteration j that
have converged to the origin. Finally, we define the convex Safe Set as

CSj = conv(SSj). (8.12)

8.2.2 Q-function

At time t of the jth iteration, the cost-to-go associated with the closed loop trajectory (8.10b)
and input sequence (8.10a) is defined as

J jt→∞(x̄jt) =
∞∑
k=0

h(x̄jt+k, ū
j
t+k),

where h(·, ·) is the stage cost of problem (8.8). Note that J j0→∞(sj0) quantifies the controller
performance at the jth iteration.

We are now in place to define the barycentric function [63]

Qj(x̄) := min
λt≥0,∀t∈[0,∞)

j∑
i=0

∞∑
t=0

λitJ
i
t→∞(x̄it)

s.t.

j∑
i=0

∞∑
t=0

λitx̄
i
t = x̄,

j∑
i=0

∞∑
t=0

λit = 1,

where x̄it is the nominal state at time t of the i-th iteration, as defined in (8.10b). The
function Qj(·) assigns to every point in CSj the minimum cost-to-go along the trajectories
in CSj.

8.2.3 Robust LMPC

In this section, we present the proposed robust LMPC algorithm for the linear systems
subject to additive uncertainty (8.1). We introduce the following finite time optimal control



CHAPTER 8. CERTAINTY EQUIVALENT LMPC 114

problem

JMPC,j
t→t+N(xjt) = min

x̄j
t|t,ū

j
t|t,...,ū

j
t+N−1|t

t+N−1∑
k=t

h(x̄jk|t, ū
j
k|t) +Qj(x̄jt+N |t) (8.14a)

s.t. x̄jk+1|t = Ax̄jk|t +Būjk|t,∀k ∈ {t, . . . , t+N − 1} (8.14b)

x̄jk|t ∈ X̄ , ū
j
k|t ∈ Ū ,∀k ∈ {t, . . . , t+N − 1} (8.14c)

x̄jt+N |t ∈ CS
j, (8.14d)

xt − x̄jt|t ∈ E . (8.14e)

The solution to the above optimal control problem is a nominal trajectory which steers
the system from x∗,jt|t to the CSj. Problem (8.14) may be used to design a robust MPC,

which guarantees robust constraint satisfaction [82]. However, we notice that the first state
of the open-loop sequence x∗,jt|t is an optimization variable, which enforces et = xt − x̄jt|t ∈
E . Therefore, robust MPC strategies based on Problem (8.14) do not guarantee that the
certainty equivalent closed-loop trajectory is feasible, i.e. it is not required that x̄j ∈ X̄ . For
this reason, we introduce the following finite time optimal control problem, which will allow
us to guarantee feasibility of the certainty equivalent closed-loop trajectory,

J LMPC,j
t→t+N(xjt , x̄

j
t−1, ū

j
t−1|t−1) = min

ūj
t|t,...,ū

j
t+N−1|t

x̄j
t|t,ū

j
t−1|t

t+N−1∑
k=t

h(x̄jk|t, ū
j
k|t) +Qj(x̄jt+N |t) (8.15a)

s.t. x̄jk+1|t = Ax̄jk|t +Būjk|t,∀k ∈ {t, . . . , t+N − 1} (8.15b)

x̄k|t ∈ X̄ , ūjk|t ∈ Ū ,∀k ∈ {t, . . . , t+N − 1} (8.15c)

x̄jt+N |t ∈ CS
j, (8.15d)

xt − x̄jt|t ∈ E (8.15e)

x̄jt|t = Ax̄jt−1 +Būjt−1|t (8.15f)

h(x̄jt−1, ū
j
t−1|t) ≤ h(x̄jt−1, ū

j
t−1|t−1). (8.15g)

Compare (8.14) with (8.15), we notice that Problem (8.14) has the additional constraints (8.15f)
and (8.15g). Those constraints allow us to construct a feasible closed-loop trajectory of the
certainty equivalent system which can be used enlarge the safe set. In particular, we define
Algorithm 2 which at time t = 0 solves Problem (8.14) and for t ≥ 0 solves Problem (8.15).
Then, at each time t of iteration j, we run Algorithm 2 and we apply to system (8.1)

ujt = −K(xt − x̄j,∗t|t ) + ūj,∗t|t . (8.16)

Furthermore, we use the output from Algorithm 2 to construct the closed-loop trajectory of
the certainty equivalent system

x̄jt = x̄j,∗t|t (8.17)



CHAPTER 8. CERTAINTY EQUIVALENT LMPC 115

and if t ≥ 0 we store the associated input action

ūjt−1 = ūj,∗t−1|t. (8.18)

The stored input-state pairs from (8.17) and (8.18) represent a feasible trajectory of the
certainty equivalent system, which is used to enlarge the safe set and to update the Q-
function.

Algorithm 2: LMPC Algorithm

Given the state measured state xjt at time t
Given the optimal state x̄j,∗t|t−1 and input ūj,∗t−1|t−1 (Needed if t > 0)

if t = 1 then

Let x̄∗,jt|t , ū
∗,j
t|t , . . . , ū

∗,j
t+N−1|t be the optimizer to J jt→∞(x̄jt)

Return x̄∗,jt|t , ū
∗,j
t|t

else

Let x̄∗,jt|t , ū
∗,j
t−1|t, ū

∗,j
t|t , . . . , ū

∗,j
t+N−1|t be the optimizer to J jt→∞(x̄jt , x̄

j,∗
t|t−1, ū

j,∗
t−1|t−1)

Return x̄j,∗t|t , ū
j,∗
t|t , ū

j,∗
t−1|t

end

8.3 Properties

In this section, we show that the robust LMPC policy (8.16) in closed-loop with system (8.1)
guarantees recursive robust constraint satisfaction, asymptotic convergence to a neighbor-
hood of the origin and iterative performance improvement.

Assumption 16 At iteration 0, we are given a feasible closed-loop trajectory x̄0 and the
associated feasible input sequence x̄0.

Theorem 20 Consider system (8.1) in closed loop with the robust LMPC policy (8.16). Let
Assumptions 15-16 hold. Then, the closed-loop system (8.1) and (8.16) satisfies state and
input constants and it converges asymptotically to the set E for every iteration j ≥ 1 and all
w ∈ W.

Proof The proof follows from invariance of E and the proof of Theorem 4.

Theorem 21 Consider system (8.1) in closed loop with the robust LMPC policy (8.16).
Let Assumptions 15-16 hold. Then, the closed-loop performance of the certainty equivalent
system J jt→∞(x̄jS) is non-decreasing with the iteration index.

Proof The proof follows as in Theorem 5.



CHAPTER 8. CERTAINTY EQUIVALENT LMPC 116

8.4 Example

In this section, we apply the proposed robust LMPC algorithm to robustly steer the system

xt+1 =

[
1 1
0 1

]
xt +

[
0
1

]
ut + wt

to a neighborhood of the origin while satisfying state xt ∈ X = {x ∈ R2 : ||x||∞ ≤ 15} and
input constraint ut ∈ U = {u ∈ R1 : ||u||∞ ≤ 5}, for all wt ∈ W = {w ∈ R2 : ||w||∞ ≤ 0.1}.
Furthermore, we introduce the following infinite time optimal control problem which we will
use to benchmark the performance of the robust LMPC policy,

J∗0→∞(xS) = min
x̄0,ū0,ū1,...

∞∑
t=0

x̄Tt Qx̄t + ūTt Rūt

s.t. x̄t+1 =

[
1 1
0 1

]
x̄t +

[
0
1

]
ut, ∀t ∈ {0, 1, . . .}

x̄k ∈ X̄ , vk ∈ Ū ,∀k ∈ {0, 1, . . .}
xS − x0 ∈ E ,

(8.19)

where E is a robust positive invariant set for the error dynamics from (8.3) defined by the gain
K, which is given by the solution of the LQR problem for Q = I and R = 10. Furthermore,
the constraint sets X̄ and Ū are defined as in (8.6).

0 2 4 6 8 10 12 14

Iteration

585

586

587

588

589

590

591

592

593

It
e
r
a
t
io
n
C
o
s
t

Iteration Cost

Optimal Cost

Figure 8.1: Iteration cost at each iteration. We notice that the cost is decreasing until it
converges to the optimal cost to Problem (8.19).



CHAPTER 8. CERTAINTY EQUIVALENT LMPC 117

-16 -14 -12 -10 -8 -6 -4 -2 0 2

x1

-1

0

1

2

3

4

5

6

x
2

Sampled Safe Set

LMPC closed-loop at itearation 2

Optimal Solution

-16 -14 -12 -10 -8 -6 -4 -2 0 2

x1

-1

0

1

2

3

4

5

6

x
2

Sampled Safe Set

LMPC closed-loop at itearation 3

Optimal Solution

-16 -14 -12 -10 -8 -6 -4 -2 0 2

x1

-1

0

1

2

3

4

5

6

x
2

Sampled Safe Set

LMPC closed-loop at itearation 5

Optimal Solution

-16 -14 -12 -10 -8 -6 -4 -2 0 2

x1

-1

0

1

2

3

4

5

6

x
2

Sampled Safe Set

LMPC closed-loop at itearation 15

Optimal Solution

Figure 8.2: Comparison between the optimal trajectory (in black) and the closed-loop trajec-
tories (in blue) at iteration j = {2, 3, 5, 15}. We notice that as more iterations are performed
the sampled safe set (in red) is enlarged and the closed-loop trajectory is closer to the optimal
one.

We implement the robust LMPC policy (8.16) with a control horizon N = 3. We compute
a first feasible solution to initialized the LMPC algorithm and then we use the closed-loop
trajectory of the certainty equivalent system to enlarge the safe set and compute the Q-
function. Figure 8.2 shows the evolution safe set and closed-loop trajectory for the certainty
equivalent system through 4 different iterations. At the first iteration in the top left corner,
the controller deviates from the safe set, but the closed-loop trajectory is far from the
optimal solution to Problem 8.19. However, as more iteration are performed, the closed-loop
trajectories gets closer to the optimal one, until the two trajectories overlap. As a results,
the closed-loop cost converges to the optimal one, as shown in Figure 8.1. We notice that
the certainty equivalent cost is non-increasing as discussed in Theorem 20.

Finally, we performed 1000 Monte-Carlo simulations for the closed-loop system (8.16)
and (8.1), which are shown in Figure 8.3. We confirm that regardless of the disturbance



CHAPTER 8. CERTAINTY EQUIVALENT LMPC 118

Figure 8.3: Closed-loop simulations for 1000 Monte-Carlo simulations. We notice that the
state constraints are robustly satisfied.

realization the robust LMPC policy steered the system to the neighborhood of the origin E ,
while satisfying state and input constraints.



119

Chapter 9

Autonomous Racing Experiments

In this chapter, we illustrate the system identification strategy used to implement the Learn-
ing Model Predictive Controller (LMPC) for autonomous racing. We model the autonomous
racing problem as a minimum time iterative control task, where an iteration corresponds to
a lap. The system trajectory and input sequence of each lap are stored and used to system-
atically update the controller for the next lap. The first part of this chapter, we introduce a
local LMPC which reduces the computational burden associated with the strategy proposed
in Chapter 4. Afterwards, we present a system identification strategy for the autonomous
racing iterative control task. We use data from previous iterations and the vehicle’s kinematic
equations of motion to build an affine time-varying prediction model. The effectiveness of
the proposed strategy is demonstrated by experimental results on the Berkeley Autonomous
Race Car (BARC) platform.

9.1 Problem Formulation

Consider the following state and input vectors

x =
[
vx, vy, wz, eψ, s, ey

]>
and u =

[
δ, a
]>
,

where wz, vx, vy, are the vehicle’s yaw rate, longitudinal and lateral velocities. The position
of the vehicle is represented in the curvilinear reference frame [83], where s is the distance
travelled along the centerline of the track. The states eψ and ey are the heading angle
and lateral distance error between the vehicle and the centerline of the track, as shown in
Figure 9.1. Finally, δ and a are the steering and acceleration commands. The vehicle is
described by the dynamic bicycle model

xt+1 = f(xt, ut), (9.1)

where f(·, ·) is derived from kinematics and balancing the forces acting on the tires [67]. A
detailed expression can be found in [67, Chapter 2]. Note that in the curvilinear reference



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 120

frame state and input constraints are convex, i.e.

xt ∈ X = {x ∈ Rn : Fxx ≤ bx},
ut ∈ U = {u ∈ Rd : Fuu ≤ bu}, ∀t ≥ 0.

ey

s

distance travelled along the path

path’s origin

Figure 9.1: Representation of the vehicle’s position in the curvilinear reference frame.

The goal of the controller is to drive the system from the starting point xS to the terminal
set XF . More formally, the controller aims to solve the following minimum time optimal
control problem

min
T,u0,...,uT−1

T−1∑
t=0

1

s.t. xt+1 = f(xt, ut), ∀t = [0, . . . , T − 1]

xt ∈ X , ut ∈ U , ∀t = [0, . . . , T ]

xT = XF , x0 = xS,

(9.2)

where for a track of length L the terminal set

XF = {x ∈ Rn : [0 0 0 0 1 0]x = s ≥ L} (9.3)

represents the states beyond the finish line.

9.2 Controller Design

In this section, we first show how to use historical data to construct a terminal constraint set
and terminal cost function. Afterwards, we exploit these quantities to design the controller.

9.2.1 Stored Data

We define one iteration as a successful lap around the race track and we store the closed-loop
trajectories. In particular, at the jth iteration we define the vectors

uj = [uj0, . . . , u
j
T j

]

xj = [xj0, . . . , x
j
T j

],
(9.4)

which collect the evolution of closed-loop system and associated input sequence. In the above
definitions, T j denotes the time at which the closed-loop system reached the terminal set,
i.e. xT j ∈ XF .



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 121

9.2.2 Local Convex Safe Set

This sections shows how to construct a local convex safe set using a subset of the stored data
point. In particular, we define the local convex safe set around x is defined as the convex
hull of the K-nearest neighbors to x.

First, for the jth trajectory we define the set of time indices [tj,∗1 , . . . , tj,∗K ] associated with
the K-nearest neighbors to the point x,

[tj,∗1 , . . . , tj,∗K ] = argmin
t1,...,tK

K∑
i=1

||xjti − x||
2
D

s.t. ti 6= tk, ∀i 6= k

ti ∈ {0, . . . , T j},∀i ∈ {1, . . . , K}.

(9.5)

In the above definition ||y||2D = y>D>Dy for the user-defined matrix D, which may be
chosen to take into account the relative scaling or relevance of different variables. We chose
D = diag(0, 0, 0, 0, 1, 0) to select the K-nearest neighbors with respect to the curvilinear
abscissa s, which represents a proxy for the distance between two stored data points of the
same lap. Furthermore, as the vehicle moves forward on the track, at each lap the stored
data are ordered with respect to the travelled distance s and the computation of (9.5) is
simplified. The K-nearest neighbors to x from the lth to the jth iteration are collected in
the following matrix

Dj
l (x) = [xl

tl,∗1
, . . . , xl

tl,∗K
, . . . , xj

tj,∗1
, . . . , xj

tj,∗K
],

which is used to define the local convex safe set around x

CLjl (x) = {x̄ ∈ Rn : ∃λ ∈RK(j−l+1),λ ≥ 0,1λ = 1, Dj
l (x)λ = x̄}. (9.6)

Notice that the above local convex safe set CLjl (x) represents the convex hull of the K-nearest
neighbors to x from the lth to jth iteration.

Finally, we define the matrix

Sjl (x) = [xl
tl,∗1 +1

, . . . , xl
tl,∗K +1

, . . . , xj
tj,∗1 +1

, . . . , xj
tj,∗K +1

]

which collects the evolution of the states stored in the columns of the matrix Dj
l (x). The

above matrix Sjl (x) will be used in Section 9.2.4 to construct the local convex safe set at
each time step.

9.2.3 Local Convex Q-function

This section shows how to construct an approximation of the value function over the local
convex safe set CLjl (x) around x. In particular, we define the local convex Q-function around
x as the convex combination of the cost associated with the stored trajectories,

Qj
l (x̄, x) = min

λ
Jjl (x)λ

s.t λ ≥ 0, 1λ = 1, Dj
l (x)λ = x̄,

(9.7)



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 122

where λ ∈ Rk(j−l), 1 is a row vector of ones and the row vector

Jjl (x) = [J l
tl,∗1 →T l

(xl
tl,∗1

), . . . , J l
tl,∗M→T l

(xl
tl,∗M

), . . . ,

J j
tj,∗1 →T j

(xj
tj,∗1

), . . . , J j
tj,∗M →T j

(xj
tj,∗M

)],

collects the cost-to-go associated with the K-nearest neighbors to x from the lth the jth
iteration. The cost-to-go J j

t→T j(x
j
t) = T j − t represents the time to drive the vehicle from

xjt to the finish line along the jth trajectory. We underline that the cost-to-go is computed
after completion of the jth iteration.

9.2.4 Local LMPC Design

The local convex safe set and the local convex Q-function are used to design the controller.
At each time t of the jth iteration the controller solves the following finite time optimal
control problem

J LMPC,j
t→t+N(xjt , z

j
t ) = min

Uj
t ,λ

j
t

[ t+N−1∑
k=t

h(xjk|t) + Jj−1
l (zjt )λ

j
t

]
(9.8a)

s.t. xjt|t = xjt , (9.8b)

λjt ≥ 0,1λjt = 1, Dj−1
l (zjt )λ

j
t = xjt+N |t (9.8c)

xjk+1|t = Ajk|tx
j
k|t +Bj

k|tu
j
k|t + Cj

k|t, (9.8d)

xjk|t ∈ X , u
j
k|t ∈ U , (9.8e)

∀k = t, · · · , t+N − 1,

where Uj
t = [ujt|t, . . . , u

j
t+N−1|t] ∈ Rd×N , λjt ∈ R(j−l+1)K and the stage cost in (9.8a)

h(x) =

{
1 If x /∈ XF
0 Else

.

In the above finite time optimal control problem equations (9.8b), (9.8d) and (9.8e) represent
the dynamic update, state and input constraints. Finally, (9.8c) enforces xjt+N |t into the local

convex safe set defined in Section 9.2.2. The optimal solution to (9.8) at time t of the jth
iteration

λj,∗t , [x
j,∗
t|t , . . . , x

j,∗
t+N |t] and Uj,∗

t = [uj,∗t|t , . . . , u
j,∗
t+N−1|t] (9.9)

is used to compute the following vector

zjt =

{
xj−1
N If t = 0

Sjl (z
j
t−1)λj,∗t−1 Otherwise

, (9.10)



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 123

which at time t defines the local convex safe set LSjl (z
j
t ) and local Q-function Qj

l (x, z
j
t ) in

(9.8). The above vector zjt represents a candidate terminal state for the planned trajectory
of the LMPC at time t. First, we initialize the candidate terminal state zj0 using the (j−1)th
trajectory. Afterwards, we update the vector zjt as the convex combination of the columns
of the matrix Sjl (z

j
t ) from Section 9.2.2. Notice that if the systems is linear or if a linearized

system approximates the nonlinear dynamics over the local convex safe set, then there exists
a feasible input which drives the system from xj,∗t+N |t = Dj−1

t (zjt )λ
j,∗
t to zjt+1 = Sj−1

l (zjt )λ
j,∗
t .

Finally, we apply to the system (9.1) the first element of the optimizer vector,

ujt = uj,∗t|t . (9.11)

The finite time optimal control problem (9.8) is repeated at time t + 1, based on the new
state xt+1|t+1 = xjt+1.

9.3 System Identification Strategy

We illustrate the system identification strategy used to build an Affine Time Varying (ATV)
model which approximates the vehicle dynamics. First, we introduce the kinematic equations
of motion which describe the evolution of the vehicle’s position as a function of the velocities.
Afterwards, we present the strategy used to approximate the dynamic equations of motion,
which model the evolution of the vehicle’s velocities as a function of the input commands.
Finally, we describe the ATV model, which is computed online linearizing the kinematic
equations of motion and evaluating the approximate dynamic equations of motion along the
shifted optimal solution to the LMPC.

9.3.1 Kinematic Model

As mentioned in Section 9.1, the position of the vehicle is expressed in the Frenet reference
frame [83]. In particular, we describe the position of the vehicle in terms of lateral distance
ey from the centerline of the road and distance s traveled along a predefined path (Fig. 9.1).
The state eψ represents the difference between the vehicle’s heading angle and the angle of
the tangent vector to the path at the curvilinear abscissa s.

The rate of change of the vehicle’s position in the curvilinar reference frame is described
by the following kinematic relationships

ėψ = wz −
vx cos(eψ)− vy sin(eψ)

1− κ(s)ey
κ(s)

ṡ =
vx cos(eψ)− vy sin(eψ)

1− κ(s)ey

ėy = vx sin(eψ) + vy cos(eψ),



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 124

where κ(s) is the curvature of the centerline of the track at the curvilinear abscissa s [83]. The
above equations can be Euler discretized to approximate the vehicle’s motion as a function
of the vehicle’s velocities

eψk+1
= feψ(xk) = eψk + dt

(
wzk −

vxk cos(eψk)− vyk sin(eψk)

1− κ(sk)eyk
κ(sk)

)

sk+1 = fs(xk) = sk + dt

(
vxk cos(eψk)− vyk sin(eψk)

1− κ(sk)eyk

)

ėy = fey(xk) = eyk + dt

(
vxk sin(eψk) + vyk cos(eψk)

)
,

(9.12)

where dt is the discretization time. The above equations will be linearized to compute an
ATV prediction model. It is interesting to notice that equations (9.12) are independent of
the vehicle’s physical parameters, because these are derived from kinematic relationships
between velocities and position.

9.3.2 Dynamic Model

The dynamic equations of motion, which describe the evolution of the vehicle’s velocities,
may be computed balancing the forces acting on the tires [67]. Therefore, the dynamic
equations depend on physical parameters associated with the vehicle, tires and asphalt.
These parameters may be estimated through a system identification campaign. However, the
nonlinear dynamic equations of motion should be linearized in order to obtain an ATV model
which allows us to reformulate the LMPC as a QP. Instead of identifying the parameters of
a nonlinear model and then linearize it, we propose to directly learn a linear model around
x using a local linear regressor. We introduce the Epanechnikov kernel function [84]

K(u) =

{
3
4
(1− u2), for |u| < 1

0, else
,

which is used to compute a local linear model around x for the longitudinal and lateral
dynamics. In particular, for l = {vx, vy, wz} we compute the following regressor vector

Γl(x) = argmin
Γ

∑
{k,j}∈I(x)

K

(
||x− xjk||2Q

h

)
yj,lk (Γ), (9.13)

where the hyperparameter h ∈ R+ is the bandwidth, the row vector Γ ∈ R5,

yj,vxk (Γ) = ||vjxk+1
− Γ[vjxk , v

j
yk
, wjzk , a

j
k, 1]T ||

y
j,vy
k (Γ) = ||vjyk+1

− Γ[vjxk , v
j
yk
, wjzk , δ

j
k, 1]T ||

yj,wzk (Γ) = ||wjzk+1
− Γ[vjxk , v

j
yk
, wjzk , δ

j
k, 1]T ||,



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 125

and Ijl (x) is the set of indices

Ijl (x) = argmin
{k1,j1},...,{kP ,jP }

P∑
i=1

||x− xjiki ||
2
Q

s.t.

ki 6= kn, ∀ji = jn

ki ∈ {1, 2, . . .}, ∀i ∈ {1, . . . , P}
ji ∈ {l, . . . , j},∀i ∈ {1, . . . , P},

where ||y||Q = y>Q>Qy and the matrix Q is user defined. For the stored data from iteration
l to iteration j, the set Ijl (x) collects the indices associated with the P -nearest neighbors
to the state x. Finally, the user-defined matrix Q takes into account the relative scaling of
different variables.

Notice that the optimizer in (9.13) can be used to approximate the evolution of vehicle’s
velocities,vxk+1

vyk+1

wzk+1

 =

Γvx1:3(x)
Γ
vy
1:3(x)

Γwz1:3(x)

vxkvyk
wzk

+

Γvx4 (x) 0
0 Γ

vy
4 (x)

0 Γwz4 (x)

[ak
δk

]
+

Γvx5 (x)
Γ
vy
5 (x)

Γwz5 (x)

 , (9.14)

where for l = {vx, vy, wz} the scalar Γli(x) denotes the ith element of the vector Γl(x) and
Γl1:3(x) ∈ R3 is a row vector collecting the first three elements of Γl(x) in (9.13).

9.3.3 Affine Time Varying Model

In this section we describe the strategy used to build an ATV model, which is then used for
control. At time t of the jth iteration, we define the candidate solution x̄jt = [x̄jt|t, . . . , x̄

j
t+N |t]

to Problem (9.8) using the optimal solution at time t− 1 from (9.9),

x̄jk|t =

{
xj,∗k|t−1 If k ∈ {t, . . . , t+N − 1}
zjt If k = t+N

.

Finally at each time t of iteration j, the above candidate solution is used to build the following
ATV model

xjk+1|t = Ajk|tx
j
k|t +Bj

k|tu
j
k|t + Cj

k|t, (9.15)



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 126

where xjk|t = [vjxk|t , v
j
yk|t
, wjyk|t , e

j
ψk|t

, sjk|t, e
j
yk|t

] and the matrices Ajk|t, B
j
k|t and Cj

k|t are obtained

linearizing (9.12) around x̄jk|t and evaluating (9.14) at x̄jk|t,

Ajk|t =



Γvx1:3(x̄jk|t) 0 0 0

Γ
vy
1:3(x̄jk|t) 0 0 0

Γwz1:3(x̄jk|t) 0 0 0

(∇xfeψ(x)|x̄j
k|t

)>

(∇xfs(x)|x̄j
k|t

)>

(∇xfey(x)|x̄j
k|t

)>


, Bj

k|t =



Γvx4 (x̄jk|t) 0

0 Γ
vy
4 (x̄jk|t)

0 Γwz4 (x̄jk|t)

0 0
0 0
0 0


(9.16)

and

Ck =



Γvx5 (x̄jk|t)

Γ
vy
5 (x̄jk|t)

Γwz5 (x̄jk|t)

fey(x̄
j
k|t)− (∇xfey(x)|x̄j

k|t
)>x̄jk|t

fs(x̄
j
k|t)− (∇xfs(x)|x̄j

k|t
)>x̄jk|t

feψ(x̄jk|t)− (∇xfeψ(x)|x̄j
k|t

)>x̄jk|t


. (9.17)

9.4 Experiments

The proposed control strategy has been implemented on a 1/10-scale open source vehicle
platform called Berkeley Autonomous Race Car1 (BARC). The vehicle is equipped with a
set of sensors, actuators and two on-board CPUs to perform low-level control of the actuators
as well as communication with a laptop, on which the high-level control is implemented. The
on board sensors are magnetically operated encoders, an ultrasound-based indoor positioning
system and an Inertial Measurement Unit (IMU). The CPUs are an Arduino Nano for low-
level control of the actuators and an Odroid XU4 for WiFi communication with the i7 MSI
GT72 laptop. The actuators are an electrical motor and a servo for the steering. The control
architecture has been implemented in the Robot Operating System (ROS) framework, using
Python and OSQP [85]. The code is available online2

We initialize the algorithm performing two laps of path following at constant speed. Each
jth iteration collects the data of two consecutive laps. Therefore, the local safe set and local
Q-function are defined also beyond the finish line. This strategy allows us to implement the
LMPC for the repetitive autonomous racing control task, as shown in [86]. At each jth lap,
we use the LMPC (9.8) and (9.11) to drive the vehicle from the starting line to the finish line
and we use the closed-loop data to update the controller for the next lap. The parameters

1A video of the experiment can be found at https://youtu.be/ZBFJWtIbtMo
2The code is available on the BARC GitHub repository in the “devel-ugo”

https://youtu.be/ZBFJWtIbtMo


CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 127

which define the controller are reported in Table 9.1. We also added a small input rate cost
in order to guarantee a unique solution to the QP associated with the LMPC.

Table 9.1: Parameters used in the controller design.

l j − 2
K 20
T diag(0, 0, 0, 0, 1, 0)
Q diag(0.1, 1, 1, 0, 0, 0)
P 80
h 10
N 12

Figure 9.2: Lap time of the LMPC on the oval-shaped and L-shaped tracks.

We tested the controller on an oval-shaped and L-shaped tracks on which the vehicle
runs in the counter-clockwise direction. Figure 9.2 shows that the lap time decreases until
convergence is reached after 29 laps. Furthermore, Figure 9.3 shows the evolution of the
closed-loop trajectory on the X-Y plane and the velocity profile which is color coded. In
the first row we reported the path following trajectory used to initialize the LMPC and the
closed-loop trajectories at laps 7 and 15. We notice that the controller deviates from the
initial feasible trajectory (reported in blue as the vehicle speed is 1.2m/s) in order to explore
the state space and to drive the vehicle at higher speeds, until it converges to a steady-state
behavior. The steady-state trajectories from lap 30 to 34 are reported in the bottom row of
Figure 9.3. Notice that the color bar representing the velocity profile changed from the first



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 128

to second row as the vehicle runs at higher speed at the end of the learning process. We
underline that the controller understands the benefit of breaking right before entering the
curve and of accelerating when exiting. This behavior is optimal in racing as shown in [87].

Figure 9.3: The first row in the above figure shows the closed-loop trajectory used to initialize
the LMPC and the closed-loop trajectories after few laps of learning. The second row shows
the steady state trajectories at which the LMPC has converged. Notice that the scale of the
color bar changes from the first to the second row, as the vehicle runs at higher speed after
the learning process has converged.

Figure 9.4 shows the raw acceleration measurements from the IMU. We confirm that
controller is able to operate the vehicle at the limit of its handling capability, reaching a
maximum lateral acceleration close to 1g 3. Furthermore, Figure 9.5 shows the data points
used to design the LMPC. Recall from Table 9.1 that at the jth lap the LMPC policy is
synthesized using the trajectories from lap l = j−2 to lap j−1. Therefore, as the controller
drives faster on the track, less data points are needed to design the LMPC. Moreover, in
Figure 9.6 we reported the computational time. It is interesting to notice that on average the
finite time optimal control problem (9.8) is solved in less then 10ms. Finally, we notice that
it would be possible to parallelize the computation of the N − 1 linear models which define
the ATV model from (9.15). Indeed, at time t Equations (9.16)-(9.17) may be evaluated
independently and in parallel for each predicted time k.

3The maximum allowed lateral acceleration is computed assuming that the aerodynamic effects are
negligible and the that lateral force acting on the vehicle is F = µmg for the friction coefficient µ = 1.



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 129

Figure 9.4: Recorded lateral acceleration of the vehicle running on the oval-shaped track
(top row) and L-shaped track (bottom row).

Figure 9.5: Data points used in the LMPC design at each lap.



CHAPTER 9. AUTONOMOUS RACING EXPERIMENTS 130

Figure 9.6: The first rows shows the computational cost associated with the FTOCP. In
the second row we reported the computational cost associated with the system identification
strategy.



131

Chapter 10

Data-Based Policy

As we have discussed in the previous chapters, the control action given by the LMPC policy
is computed solving a finite time optimal control problem over a moving time horizon. This
receding horizon strategy allows the controller to deviate from the previous iterations of the
control task in order to improve the closed-loop performance. In this chapter, we show how to
synthesize a data-based policy, which does not explore the state space, but it is able to math
the closed-loop performance of the trajectories used in the synthesis process. Therefore, this
strategy may be used to reduce the computational burden of the LMPC once the learning
process has converged.

The proposed strategy is model-free and can be applied whenever safe input and state tra-
jectories of a system performing an iterative task are available. These trajectories, together
with a user-defined cost function, are exploited to construct a piecewise affine approximation
to the value function. The approximated value function is then used to evaluate the control
policy by solving a linear program. We show that for linear system subject to convex cost
and constraints, the proposed strategy guarantees closed-loop constraint satisfaction and
performance bounds for the closed-loop trajectory. We evaluate the proposed strategy in
simulations and experiments, the latter carried out on the Berkeley Autonomous Race Car
(BARC) platform. We show that the proposed strategy is able to reduce the computation
time associated with the LMPC policy by one order of magnitude while achieving the same
performance as our model-based control algorithm.

10.1 Problem Formulation

Consider the unknown deterministic system

xt+1 = Axt +But (10.1)

where xt ∈ Rn and ut ∈ Rd are the system’s state and input, respectively. Furthermore, the
system is subject to the following state and input constraints,

xt ∈ X and ut ∈ U , ∀t ∈ {0, . . . , T} (10.2)



CHAPTER 10. DATA-BASED POLICY 132

where T is the time as which the control task is completed.
In the following we assume that closed-loop state and input trajectories starting at differ-

ent initial states x0 are stored. In particular, for j ∈ {0, . . . ,M} we are given the following
input sequences

uj = [uj0, . . . , u
j
T j

] (10.3)

and the associated closed-loop trajectories

xj = [xj0, . . . , x
j
T j

] (10.4)

where xjt+1 = Axjt+Bu
j
t and T j is the time at which the task is completed. These trajectories

will be used to design a data-based policy for the unknown system (10.1).
Finally, we defined the cost-to-go associated with the jth closed-loop trajectory

J j
(
xj0
)

=
T j∑
t=0

h(xjt , u
j
t), (10.5)

where xjt and ujt are the stored state and applied input to system (10.1) at time t of the jth
iteration.

Assumption 17 All M+1 input and state sequences in (10.3)-(10.4) are feasible and known.
Furthermore, assume that the state sequence in (10.4) converges to the origin and the ter-
minal input uj

T j
= 0.

Remark 11 We have decided to focus on the linear systems (10.1) as this will allow us to
rigorously characterize the properties of the proposed approach. However, we underline that
the computational cost associated with the proposed strategy is independent on the linearity
of the controlled system. Thus, the proposed strategy can be implemented also on nonlinear
systems as shown in Section 10.4.2.

Remark 12 We have decided to consider a regulation problem to streamline the presentation
of the paper. In the Appendix, we show that the proposed strategy can be used to steer
system (10.1) to a terminal control invariant set XF , without losing guarantees on safety
and performance.

10.2 Proposed Approach

In this section we describe the proposed approach. First, we recall the definition of the
sampled safe set and value function approximation computed from data, which were first
introduced in Chapter 4. Afterwards, we show how these quantities are used to evaluate the
data-based policy.



CHAPTER 10. DATA-BASED POLICY 133

10.2.1 Safe Set

We define the collection of the M closed-loop trajectories in (10.4) as the sampled Safe Set,

SSM =
M⋃
j=0

T j⋃
t=0

xjt .

Notice that for all x ∈ SSM , it exists a sequence of control actions that can steer the system
to the origin [62]. Finally, we define the convex safe set CSM as

CSM = Conv
(
SSM

)
. (10.6)

CSM will be used in the next section to defined the domain of the approximation to the
value function.

10.2.2 Q-function

In this section we show how the stored data in (10.3) and (10.4) are used to approximate
the value function. First, given the stored states xj and inputs uj for j ∈ {0, . . . ,M}, we
define the cost-to-go associated with each stored state xjt ,

J jt (xjt) =
T j∑
k=t

h(xjk, u
j
k).

The realized cost-to-go is used to compute the Q-function defined as

QM(x) = min
λ≥0

M∑
j=0

T j∑
k=0

λjkJ
j
k(xjk)

s.t.
M∑
j=0

T j∑
k=0

λjk = 1,

M∑
j=0

T j∑
k=0

λjkx
j
k = x.

(10.7)

where λ = [λ0
0, . . . , λ

0
T 0 , . . . , λM0 , , . . . , λ

M
TM ]. The Q-function QM(·) interpolates the realized

cost-to-go over the convex safe set. Moreover, we underline that Problem (10.7) is a para-
metric LP and therefore QM(x) is a piecewise affine function of x [10]. Finally, we notice
that the domain of QM(·) is the convex safe set CSM , indeed ∀x /∈ CSM the optimization
problem (10.7) is not feasible.



CHAPTER 10. DATA-BASED POLICY 134

10.2.3 Data-Based Policy

We are finally ready to introduce the data-based policy. At each time t, we evaluate the
approximation to the value function (10.7) at the current state xt, solving the following
optimization problem,

QM(xt) = min
λt≥0

M∑
j=0

T j∑
k=0

λjk|tJ
j
k(xjk)

s.t.
M∑
j=0

T j∑
k=0

λjk|t = 1,

M∑
j=0

T j∑
k=0

λjk|tx
j
k = xt.

(10.8)

where λt = [λ0
0|t, . . . , λ

0
T 0|t, . . . , λ

M
0|t, . . . λ

M
TM |t].

Let
λ∗t = [λ0,∗

0|t , . . . , λ
j,∗
k|t, . . . , λ

M,∗
TM |t] (10.9)

be the optimal solution at time t to (10.8), then we apply to system (10.1) the following
input

ut = π(xt) =
M∑
j=0

T j∑
k=0

λj,∗k|tu
j
k. (10.10)

Basically, the data-based policy (10.8) and (10.10) computes the control input ut as the
weighted sum of stored inputs, where the weights are the solution to the minimization
problem (10.8).

10.2.4 Local Data-Based Policy

In this section, we propose a Local Data-Based policy which can be used to limit the com-
putational burden of problem (10.8), when a considerable amount of data is given. First, we
define the local Q-function QM

L (·) as

QM
L (xt) = min

λt≥0

M∑
j=0

∑
k∈Kj(x)

λjk|tJ
j
k(xjk)

s.t.
M∑
j=0

∑
k∈Kj(x)

λjk|t = 1,

M∑
j=0

∑
k∈Kj(x)

λjk|tx
j
k = xt

(10.11)



CHAPTER 10. DATA-BASED POLICY 135

where λt = [λ0
t0,∗1 |t

, . . . , λ0
t0,∗N |t

, . . . , λ0
tM,∗1 |t

, . . . , λtM,∗N |t]. The elements of the setKj(x) = {tj,∗1 , . . . , tj,∗K }
are defined as

[tj,∗1 , . . . , tj,∗K ] = argmin
t1,...,tK

K∑
i=1

||xjti − x||
2
D

s.t. ti 6= tk, ∀i 6= k

ti ∈ {0, . . . , T j},∀i ∈ {1, . . . , K}.

For the j-th trajectory, the set Kj(x) collects the indices of the N closest point to the state
x. Notice that K ≤ maxi∈{0,...,j} T

i is a user-defined parameter.
Finally, we define the local data-based policy where at each time t we solve QM

L (xt)
in (10.11). Then, given the optimal solution λ∗t to Problem (10.11), we apply the following
input

ut = π(xt) =
M∑
j=0

∑
k∈Kj(xt)

λj,∗k|tu
j
k (10.12)

to system (10.1).

10.3 Properties

In this section we analyze the properties of the proposed data-based policy (10.8) and (10.10).
We show that the proposed strategy guarantees safety, closed-loop stability and performance
bounds.

Proposition 11 (Feasibility) Consider the closed-loop system (10.1) and (10.10). Let As-
sumptions 17 hold and CSM be the convex safe set defined in (10.6). If the initial state
x0 ∈ CSM . Then, the data-based policy (10.8) and (10.10) is feasible for all time t ≥ 0.

Proof The proof follows from linearity of the system.
We assume that at time t the system state xt ∈ CSM , therefore the optimization problem
(10.8) is feasible. Let (10.9) be the optimal solution to (10.8), then at the next time step t+1
we have

xt+1 = Axt +B

M∑
j=0

T j∑
k=0

λj,∗k|tu
j
k

= A

M∑
j=0

T j∑
k=0

λj,∗k|tx
j
k +B

M∑
j=0

T j∑
k=0

λj,∗k|tu
j
k

=
M∑
j=0

T j∑
k=0

λj,∗k|t(Ax
j
k +Bujk) ∈ CS

M .



CHAPTER 10. DATA-BASED POLICY 136

By Assumption 17 we have that

M∑
j=0

λj,∗
T j |t(Ax

j
T j

+Buj
T j

) = 0

and therefore

xt+1 =
M∑
j=0

T j∑
k=0

λj,∗k|t(Ax
j
k +Bujk) =

M∑
j=0

T j∑
k=0

λ̄jkx
j
k

where ∀j ∈ {0, . . .M}

λ̄j0 = 0,

λ̄jkj = λj,∗kj−1|t, ∀kj ∈ {1, . . . , T j − 1}

λ̄j
T j

= λj,∗
T j−1|t + λj,∗

T j |t

(10.13)

is a feasible solution to the optimization problem (10.8) at time t+ 1.
By assumption we have that at time t = 0 the state x0 ∈ CSM . Furthermore, we have
shown that if at time t the state xt ∈ CSM , then at time t + 1 the state xt+1 ∈ CSM
and the optimization problem (10.8) is feasible. Therefore by induction we conclude that
xt ∈ CSM ⊆ X , ∀t ∈ Z0+ and that the optimization problem (10.8) is feasible ∀t ∈ Z0+.

The above Proposition 1 implies that the data-based policy (10.8) and (10.10) satisfies the
input constraints, and the closed-loop system (10.1) and (10.10) satisfies the state constraints
at all time instants, i.e. ut ∈ U and xt ∈ X , ∀t ∈ Z0+.

Assumption 18 The stage cost h(·, ·) is a continuous convex function and ∀u ∈ U it satis-
fies

h(0, u) = 0, and h(x, u) � 0 ∀ x ∈ Rn \ {0}.

Proposition 12 (Convergence) Consider the closed-loop system (10.1) and (10.10). Let
Assumptions 17-18 hold and CSM be the convex safe set defined in (10.6). If the initial state
x0 ∈ CSM . Then, the origin of the closed-loop system (10.1) and (10.10) is asymptotically
stable.

Proof In the following we show that the approximated value function QM(·) from (10.8) is
a Lyapunov function for the origin of the closed loop system (10.1) and (10.10). Continuity
of QM(·) can be shown as in [10, Chapter 7]. Moreover from (10.5) and Assumption 2 we
have that QM(x) � 0 ∀ x ∈ CSM \ {0} and QM(0) = 0. Thus, we need to show that QM(·)
is decreasing along the closed loop trajectory.



CHAPTER 10. DATA-BASED POLICY 137

By feasibility of Problem (10.8) from Theorem 1, we have that at time t

QM(xt) =
M∑
j=0

T j∑
k=0

λj,∗k|tJ
j
k(xjk) =

M∑
j=0

T j∑
k=0

λj,∗k|t

T j∑
i=k

h(xji , u
j
i )

=
M∑
j=0

T j∑
k=0

λj,∗k|th(xjk, u
j
k) +

M∑
j=0

T j−1∑
k=0

λj,∗k|tJ
j
k+1(xjk+1).

(10.14)

We notice that the summation of the cost-to-go in the above expression can be rewritten as

M∑
j=0

T j−1∑
k=0

λj,∗k|tJ
j
k+1(xjk+1) =

M∑
j=0

T j∑
k=0

λ̄jk|tJ
j
k(xjk) ≥ QM(xt+1), (10.15)

where λ̄jk|t is the candidate solution defined in (10.13).

Finally, from equations (10.14) and (10.15) we conclude that the optimal cost is a de-
creasing Lyapunov function along the closed loop trajectory,

QM(xt+1)−QM(xt) ≤ −
M∑
j=0

T j∑
k=0

λj,∗k|th(xjk, u
j
k) < 0, ∀ xt ∈ Rn \ {0}. (10.16)

Equation (4.37), the positive definitiveness of h(·, ·) and the continuity of QM(·) imply that
the origin of the closed-loop system (10.1) and (10.10) is asymptotically stable.

Proposition 13 (Cost) Consider the closed-loop system (10.1) and (10.10). Let Assump-
tions 17-18 hold and CSM be the convex safe set defined in (10.6). If the initial state
x0 ∈ CSM . Then, the Q-function at x0, QM(x0), upper bounds the cost associated with
the trajectory of closed-loop system (10.1) and (10.10),

J
(
x0

)
=
∞∑
k=0

h(xk, uk) ≤ QM(x0) (10.17)

where {x0, . . . , xt, . . .} and {u0, . . . , ut, . . .} are the closed-loop trajectory and associated input
sequence, respectively.

Proof From (10.16) and convexity of h(·, ·), we have that

QM(xt) ≥ h(xt, ut) +QM(xt+1)

Using the above equation recursively and from the asymptotic convergence to the origin we
have that

QM(x0) ≥ h(x0, u0) +QM(x1)

≥
∞∑
k=0

h(xk, uk) + lim
k→∞

QM(xk) =
∞∑
k=0

h(xk, uk).



CHAPTER 10. DATA-BASED POLICY 138

Note that, if the optimal closed-loop trajectory from x0 = xs is given, then the ap-
proximated value function QM(xs) will be the optimal cost-to-go from xs. Consequently,
Proposition 3 implies that the proposed data-based policy will behave optimally for x0 = xs,
if the optimal behavior from x0 = xs has been observed.

10.4 Examples

In this section we first test the data-based policy (10.8) and (10.10) on a double integrator
system. Afterwards, we test the local data-based policy (10.11) and (10.12) on the Berkeley
Autonomous Racing Car (BARC) platform.

10.4.1 Example I: Double Integrator

Consider the following discrete time Constrained Linear Quadratic Regulator (CLQR) prob-
lem

J∗
(
x0

)
= min

ū0,ū1,...

∞∑
k=0

[
||x̄k||22 + ||ūk||22

]
s.t.

x̄k+1 =

[
1 1
0 1

]
x̄k +

[
0
1

]
ūk, ∀k ≥ 0[

−10
−10

]
≤ x̄k ≤

[
10
10

]
∀k ≥ 0

− 1 ≤ ūk ≤ 1 ∀k ≥ 0,

x̄0 = x0 = [−1, 3]>.

(10.18)

First, we construct the convex safe set using one solution to the above CLQR and we em-
pirically validate Proposition 1-3. Afterwards, we analyze the effect of the amount of data
on the value function approximation and the data-based policy (10.8) and (10.10).

10.4.1.1 Properties verification

First, we compute and store the optimal solution to the CLQR problem (10.18),

[x̄∗0, x̄
∗
1, . . . , x̄

∗
T ]

[ū∗0, ū
∗
1, . . . , ū

∗
T ]

(10.19)

where T is the time index at which ||x̄∗T ||22 ≤ ε = 10−10.
The stored optimal trajectory in (10.19) is used to build the convex safe set CSM in

(10.6) for M = 1 and the approximation to the value function QM(·) in (10.7). We tested
the data-based policy for x0 = x̄∗0 and for other 10 randomly picked initial conditions inside



CHAPTER 10. DATA-BASED POLICY 139

.

Figure 10.1: Closed-loop trajectories performed by the data-based policy.

CSM . We denote the resulting closed-loop trajectories and associated input sequences for
j ∈ {0, . . . , 9} as

xj = [xj0, . . . , x
j
T j

]

uj = [uj0, . . . , u
j
T j

]
. (10.20)

Figure 10.1 shows the closed-loop trajectories, we confirm that state and input constraints
are satisfies, accordingly to Proposition 1. Furthermore, we notice that the closed-loop
trajectories converge to the origin as we expected from Proposition 2. It is interesting to
notice that for x0 = x̄∗0 the closed-loop trajectory performed by the data-based policy overlaps
with the optimal one.

Moreover, we analyze the cost associated with the closed-loop trajectories (10.17). Ta-
ble 10.1 shows the realized cost (10.17) and the approximated value function QM(·) evaluated
at different initial conditions. We confirm that QM

(
x0

)
upper bounds the performance of

the closed-loop trajectory, as shown in Proposition 3.

10.4.1.2 The effect of data

Finally, we empirically analyze the effect of data on the Q-function and the data-based
policy. First, we construct two approximations to the value function: QM1(·) using (10.19)
and M1 = 10 stored state and input trajectories computed in the previous subsection (10.20),
and QM2(·) using (10.19) and the optimal solution to the CLQR for x̄0 = [2.9033, 1.2959].



CHAPTER 10. DATA-BASED POLICY 140

Table 10.1: Comparison of the realized cost and value function for different initial conditions

x0 J
(
x0

)
QM
(
x0

)
[−1, 3]> 112.53 112.53
[2.9033, 1.2959]> 78.60 89.60
[3.9495, 0.3921]> 62.00 73.97
[3.3673, 0.8315]> 66.45 79.23
[3.4349, 0.7243]> 62.96 76.79
[3.9253, 0.0874]> 50.37 63.69
[3.1189, 0.9013]> 63.11 78.18
[3.8963, 0.1645]> 52.12 65.74
[2.5449, 1.0898]> 58.04 76.85
[3.4751, 0.6212]> 59.22 74.06
[2.5770, 1.1763]> 63.34 80.50

Afterwards, we run the data-based policy using QM1(·) and Q2(·). Table 10.2 shows the cost
associated with the closed-loop trajectories J i(·) and the value function approximation Qi(·),
for i = {1, 2}. We notice that QM1(x0) lower bounds QM(x0) from Table 10.1 and, therefore,
better approximates the value function. However, the realized cost J1(x0) does not improve
with respect to J(x0) from Table 10.1. On the other hand, we notice that the data-based
policy constructed using Q2(·) is able to improve the closed-loop performance J2(x0). It is
interesting to notice that QM1(x0) is constructed using one optimal trajectory and 10 feasible
trajectories, whereas Q2(x0) is constructed using just two optimal trajectories. This result
is interesting and it suggests that not all data points are equally valuable.

Table 10.2: Comparison of the realized cost and value function for different initial conditions

x0 J1
(
x0

)
QM1

(
x0

)
J2
(
x0

)
QM2

(
x0

)
[−1, 3]> 112.53 112.53 112.53 112.53
[2.9033, 1.2959]> 78.60 78.60 72.89 72.89
[3.9495, 0.3921]> 62.00 62.00 59.43 62.12
[3.3673, 0.8315]> 66.45 66.45 61.86 66.39
[3.4349, 0.7243]> 62.96 62.96 58.97 64.38
[3.9253, 0.0874]> 50.37 50.37 49.24 54.57
[3.1189, 0.9013]> 63.11 63.11 58.76 65.04
[3.8963, 0.1645]> 52.12 52.12 50.73 55.86
[2.5449, 1.0898]> 58.04 58.04 53.85 62.65
[3.4751, 0.6212]> 59.22 59.22 55.81 62.12
[2.5770, 1.1763]> 63.34 63.34 58.63 65.74



CHAPTER 10. DATA-BASED POLICY 141

10.4.2 Example II: Autonomous Racing Experiments

In this section, we test the proposed control strategy on a 1/10-scale open source vehicle
platform called the Berkeley Autonomous Race Car (BARC)1. The BARC is equipped with
an inertial measurement unit, encoders, and an ultrasound-based indoor GPS system. The
vehicle has an Odroid XU4 which is used for collecting data and running the state estimator.
Finally, the computation are performed on a MSI laptop with an intel CORE i7. A video of
the experiments can be found here: https://youtu.be/pB2pTedXLpI.

The control task is to drive the vehicle continuously around the track minimizing the lap
time, while being within the track boundaries. The state vector is

x = [vx, vy, wz, eψ, s, ey]
>

where vx, vy and wz represent the vehicle’s longitudinal, lateral and angular velocity in the
body fixed frame. The position of the system is measured with respect to the curvilinear
reference frame [83], where s represents the progress of the vehicle along the centerline of
the track, eψ and ey represent the heading angle and lateral distance error between the
vehicle and the path. It is important to underline that, given the lane boundaries eymin and
eymax , the feasible region X = {x ∈ Rn : eymin ≤ e>6 x ≤ eymax} for e6 = [0, 0, 0, 0, 0, 1]> is a
convex set. The control input vector is u = [δ, a] where δ and a are the steering angle and
acceleration, respectively. The input constraints are

−0.25[rad] ≤δ ≤ 0.25[rad]

−0.7[m/s2] ≤a ≤ 2[m/s2].

Finally, we underline that the autonomous racing problem is a repetitive task and the goal is
not to steer the system to the origin. Therefore, we use the method from Chapter 9 to apply
the proposed strategy to the autonomous racing repetitive control problem. In particular, we
define the set of state beyond the finish line of the track of length L, XF = {x ∈ R6 : e>5 x ≥ L}
and we use the set XF to compute the cost associated with the stored trajectories

h(x, u) =

{
1 If x /∈ XF
0 If x ∈ XF

.

For the first 29 laps of the experiment, we run the Learning Model Predictive Controller
(LMPC) from Chapter 9 to learn a fast trajectory which drives the vehicle around the track.
From the 30th lap, we run the local data-based policy (10.11) and (10.12) using the latest
M = 8 laps and N = 10 stored data for each lap. Therefore, the control action is com-
puted upon solving the small optimization problem (10.11) where [λ0

0|t, . . . , λ
j
k|t, . . . , λ

M
TM |t] ∈

RM |Kj(x)| with M |Kj(x)| = 80.
We tested the controller on an oval-shaped and L-shaped tracks. Figures 10.2, 10.4

and 10.5 show that the local data-based policy (10.11) and (10.12) is able to drive the

1More information at the project site barc-project.com

https://youtu.be/pB2pTedXLpI
http://www.barc-project.com/


CHAPTER 10. DATA-BASED POLICY 142

−4 −3 −2 −1 0 1 2 3 4

x [m]

−1

0

1

2

3

4

5

y
 [

m
]

LMPC

Data-Based Policy

(a) Oval-shaped track.

−4 −3 −2 −1 0 1 2 3

x [m]

−1

0

1

2

3

4

5

6

7

y
 [

m
]

LMPC

Data-Based Policy

(b) L-shaped track.

Figure 10.2: In red squares are shown the closed-loop trajectories performed by the data-
based policy on the oval-shaped track. In blue circles are reported three trajectories in the
sampled safe set. Finally, the green dashed line marks the centerline of the track.

0 5 10 15 20 25 30 35 40

Lap Number

0

5

10

15

20

L
a
p
 T

im
e
 [

s
]

LMPC

Data-Based Policy

(a) Oval-shaped track.

0 5 10 15 20 25 30 35 40

Lap Number

0

5

10

15

20

L
a
p
 T

im
e
 [

s
]

LMPC

Data-Based Policy

(b) L-shaped track.

Figure 10.3: Lap time on L-shaped track over the lap number. At the 30th lap the data-based
policy drives the vehicle around the track without worsening the closed loop-performance.



CHAPTER 10. DATA-BASED POLICY 143

vehicle around the track satisfying input and state constraints. Furthermore, we notice that
the closed-loop trajectories generated with the local data-based policy lies in the convex hull
of the sampled safe set SS, which is constructed from the last 8 trajectories performed by
the LMPC. It is interesting to notice that the real system is nonlinear but smooth and, for
this reason, the system dynamics can be locally linearized. Intuitively, the existence of a
local linear model allows us to use the local data-based policy to safely drive the vehicle.
Indeed at each time t the controller uses only the historical data close to the system’s state
xt.

Figure 10.3 report the lap time over the lap number. We notice that the data-based
policy is able to safely drive the vehicle around the track, without hurting the closed-loop
performance. In particular, the data-based policy is able to replicate the best lap times
performed by the LMPC controller on both tracks.

0 2 4 6 8 10 12 14
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6

v
x
 [

m
/s

]

LMPC Data-Based Policy

0 2 4 6 8 10 12 14 16
−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

v
y
 [

m
/s

]

0 2 4 6 8 10 12 14
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

w
z
 [

ra
d
/s

]

0 2 4 6 8 10 12 14
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

e
p
s
i 
[r

a
d
]

0 2 4 6 8 10 12 14
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

e
y
 [

m
]

0 2 4 6 8 10 12 14
−0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30

d
e
lt

a
 [

ra
d
]

0 2 4 6 8 10 12 14

s [m]

1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80

a
 [

m
/s

^
2
]

.

Figure 10.4: Closed-loop trajectory and associated inputs of the data-based policy and
LMPC on the oval-shaped track.

Finally, we analyze the computational time. We compare the computational cost as-



CHAPTER 10. DATA-BASED POLICY 144

sociated with the proposed data-based policy and with the LMPC. Table 10.3 shows that
on average it took ∼ 1.3ms to evaluate the proposed data-based policy and ∼ 29.5ms to
evaluate the LMPC policy.

Table 10.3: Comparison of computational time

Avarage Min Max Std Deviation

LMPC 29.5ms 21.8ms 50.0ms 6.1ms
Data-Based Policy 1.3ms 1.1ms 2.3ms 0.2ms

0 5 10 15
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

v
x
 [

m
/s

]

LMPC Data-Based Policy

0 5 10 15 20
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

v
y
 [

m
/s

]

0 5 10 15
−3

−2

−1

0

1

2

3

w
z
 [

ra
d
/s

]

0 5 10 15
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

e
p
s
i 
[r

a
d
]

0 5 10 15
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5

e
y
 [

m
]

0 5 10 15
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

d
e
lt

a
 [

ra
d
]

0 5 10 15

s [m]

1.10

1.15

1.20

1.25

1.30

a
 [

m
/s

^
2
]

Figure 10.5: Closed-loop trajectory and associated inputs of the data-based policy and
LMPC on the L-shaped track.



CHAPTER 10. DATA-BASED POLICY 145

10.5 Appendix

In this Appendix, we show that the proposed data-based policy may be used to steer a linear
time invariant system to a terminal invariant set XF . In order to prove that the properties
from Propositions 1-3 hold also in this settings the following assumptions must hold.

Assumption 19 The terminal set XF is defined by the convex hull of the terminal state of
the stored trajectories (10.4), i.e. XF = Conv

(
∪Mj=0 x

j
T j

)
.

Assumption 20 All M+1 input and state sequences in (10.3)-(10.4) are feasible and known.
Furthermore, assume that the state sequence in (10.4) converges to the terminal set XF and
the terminal input uj

T j
keeps the evolution of the system (10.1) into XF . More formally, we

assume that xj
T j
∈ XF , ∀j ∈ {0, . . . ,M} and AxT j +BuT j ∈ XF .

Proposition 14 (Feasibility) Consider the closed-loop system (10.1) and (10.10). Let As-
sumptions 19-20 hold and CSM be the convex safe set defined in (10.6). If the initial state
x0 ∈ CSM . Then, the data-based policy (10.8) and (10.10) is feasible for all time t ≥ 0.

Proof The proof follows from linearity of the system.
We assume that at time t the system state xt ∈ CSM , therefore the optimization problem
(10.8) is feasible. Let (10.9) be the optimal solution to (10.8), then at the next time step t+1
we have

xt+1 = Axt +B
M∑
j=0

T j∑
k=0

λj,∗k|tu
j
k

= A
M∑
j=0

T j∑
k=0

λj,∗k|tx
j
k +B

M∑
j=0

T j∑
k=0

λj,∗k|tu
j
k

=
M∑
j=0

T j∑
k=0

λj,∗k|t(Ax
j
k +Bujk) ∈ CS

M .

By Assumption 20 we have that for all ∀j ∈ {0, . . .M} it exist λjk ≥ 0 such that
∑M

k=0 λ
j
k = 1

and
M∑
j=0

λj,∗
T j |t(Ax

j
T j

+Buj
T j

) =
M∑
j=0

λj,∗
T j |t

M∑
k=0

λjkx
k
Tk

=
M∑
k=0

M∑
j=0

λj,∗
T j |tλ

j
kx

k
Tk =

M∑
k=0

λ̃kx
k
Tk

where ∀k ∈ {0, . . .M} we defined λ̃k =
∑M

i=0 λ
i,∗
T i|tλ

i
k. It follows that

xt+1 =
M∑
j=0

T j∑
k=0

λj,∗k|t(Ax
j
k +Bujk) =

M∑
j=0

T j∑
k=0

λ̄jkx
j
k



CHAPTER 10. DATA-BASED POLICY 146

where ∀j ∈ {0, . . .M}

λ̄j0 = 0,

λ̄jkj = λj,∗kj−1|t, ∀kj ∈ {1, . . . , T j − 1}

λ̄j
T j

= λj,∗
T j−1|t + λ̃j

(10.21)

is a feasible solution to the optimization problem (10.8) at time t+ 1.
By assumption we have at time t = 0 the state x0 ∈ CSM . Furthermore, we have shown that
if at time t the state xt ∈ CSM , then at time t+1 the state xt+1 ∈ CSM and the optimization
problem (10.8) is feasible. Therefore by induction we conclude that xt ∈ CSM ⊆ X , ∀t ∈ Z0+

and that the optimization problem (10.8) is feasible ∀t ∈ Z0+.

In order to prove convergence we make the following assumption on the stage cost.

Assumption 21 The stage cost h(·, ·) is a continuous convex function and ∀u ∈ U it satis-
fies

h(x, u) = 0,∀x ∈ XF and h(x, u) � 0 ∀ x ∈ Rn \ {XF}.

Proposition 15 (Convergence) Consider the closed-loop system (10.1) and (10.10). Let
Assumption 19-21 hold and CSM be the convex safe set defined in (10.6). If the initial state
x0 ∈ CSM . Then, the origin of the closed-loop system (10.1) and (10.10) is asymptotically
stable.

Proof The proof follows from the proof of Proposition 2. In particular, the candidate solu-
tion (10.21) may be exploited to show that QM(·) is Lyapunov function along the closed-loop
trajectory.

Proposition 16 (Cost) Consider the closed-loop system (10.1) and (10.10). Let Assump-
tions 19-21 hold and CSM be the convex safe set defined in (10.6). If the initial state
x0 ∈ CSM . Then, the Q-function at x0, QM(x0), upper bounds the cost associated with
the trajectory of closed-loop system (10.1) and (10.10),

J
(
x0

)
=
∞∑
k=0

h(xk, uk) ≤ QM
(
x0

)
where {x0, . . . , xt, . . .} and {u0, . . . , ut, . . .} are the closed-loop trajectory and associated input
sequence, respectively.

Proof The proof follows as in Proposition 13.



147

Chapter 11

Conclusions

In this thesis, we presented the Learning Model Predictive Control (LMPC) framework.
We proposed to iteratively synthesize control policies by exploiting historical data from
autonomous systems performing iterative tasks. First, we introduced the LMPC design for
deterministic systems, which guarantee recursive constraint satisfaction, closed-loop stability
and performance improvement. Furthermore we show that, under mild assumptions, if
the policy update process has converged (i.e. using new closed-loop data in the synthesis
process does not change the control policy), then the closed-loop behavior is optimal for the
entire task. Afterwards, we described the control design for uncertain systems. Finally, we
proposed a system identification strategy for iterative tasks, and we tested the controller on
the Berkeley Autonomous Race Car (BARC) platform. Experimental results showed that the
LMPC learns to safety drive a vehicle at the limits of handling. Moreover, we showed that
when the controller has converged to a steady-state behavior, the closed-loop data may be
used to synthesize a model-free policy which allows us to reduce the computational burden.

11.1 Future Work

In the following, we outline several possible extensions for future works.
Output Feedback

The proposed framework assumes perfect state measurements. This assumption may be
weakened if we consider a linear system

xt+1 = Axt +But

yt = Cxt

where (A,C) is an observable pair. In this case, it would be possible to design an output
feedback LMPC, where the safe set and value function approximation are defined over the
output space.

System Identification
In Chapter 9, we proposed a system identification strategy for iterative tasks. We constructed



CHAPTER 11. CONCLUSIONS 148

an affine time varying model around a candidate trajectory. In particular, given the candidate
state-input trajectory

[(x̄0, ū0), . . . , (x̄N , ūN)], (11.1)

we identified an affine time varying model xt+1 = Atxt + Btut + Ct around (x̄t, ūt). When
a nonlinear model xt+1 = f(xt, ut) is approximated using this strategy, the prediction accu-
racy depends on the distance between the state-input pair (xt, ut) and the candidate pair
(x̄t, ūt). Basically, the prediction error is low in a the neighborhood of (x̄t, ūt). Therefore,
in order to reduce the prediction error over the planning horizon, we could constraint the
predicted LMPC trajectory to lie close to the candidate one from (11.1). This strategy would
ensure safety and performance improvement with some confidence, when the system model
is estimated from data.

Exploration and Adaptation
As we have discussed in this thesis, the LMPC iteratively explores the state space to im-
prove the closed-loop performance. This exploration process is model-based and cost driven.
Indeed, at each time step, the controller plans a trajectory which minimizes the predicted
cost over a moving horizon. It would be interesting to explore a variation to this strategy,
where the controller minimizes both the predicted cost and a tracking cost with respect to
the best stored trajectory. Ideally, the tracking cost would be tuned online as a function
of the historical and current prediction error. This strategy would result in a cautious con-
troller, which explores the state space if the prediction error is small (i.e., if the model is
good enough for control) and, otherwise, tracks the best safe stored trajectory.

Stochastic Analysis
In Chapter 6, we proposed to use roll-outs of the closed-loop uncertain system to construct
the LMPC policy. We showed that when roll-outs are used in the synthesis process, the prop-
erties of the safe set and value function approximation are satisfied with some ε-probability.
There are two questions which arise. How many roll-outs are required to achieve a specific
ε-level of probability? What is the probability of failure for the closed-loop system? An-
swering these questions would allow us to choose a priori the number of roll-outs needed to
perform the LMPC policy update.

Learning From Failure
Throughout this thesis, we have discussed how to iteratively improve the closed-loop perfor-
mance while guaranteeing safety. We have shown that learning while being safe is possible
when a model of the system, disturbance and environment are given. When these quantities
are inaccurate, the closed-loop system may violate the safety constraints. In this scenario,
we want to detect failure as early as possible. For instance, in autonomous driving we want
to understand when a collision is inevitable to reduce the harm. Detecting failures may be
possible by online monitoring of the closed-loop cost, which should be a Lyapunov function.
Indeed, when the closed-loop cost is not decreasing, the closed-loop system has not evolved
as planned. Finally, when failure occurs, we would like to leverage this experience. I believe
that unsafe trajectories carry important information (i.e., unsafe regions of the state-input
space), and how to use them in the synthesis process is an interesting open question.



CHAPTER 11. CONCLUSIONS 149

Hybrid Systems
In this thesis, we have shown that for linear systems and for a class of nonlinear systems, the
safe set and value function approximation may be convexified. The resulting relaxed LMPC
formulation allows us to guarantee safety and performance improvement, while decreasing the
computation burden. It would be interesting to investigate LMPC relaxation strategies for
hybrid systems. It is well-known that trajectory planning for such systems is computationally
expensive, as the modes of operation are described by integer variables. However in iterative
tasks, we may use historical data to fix different sequences of operational modes. This
strategy would allows us to reduce the computational burden while safely exploring the
state space to improve the closed-loop performance.



150

Bibliography

[1] Richard M Murray et al. “Future directions in control in an information-rich world”.
In: IEEE Control Systems Magazine 23.2 (2003), pp. 20–33.

[2] Autonomous and ADAS test cars produce over 11 TB of data per day. https://www.
tuxera.com/blog/autonomous-and-adas-test-cars-produce-over-11-tb-of-

data-per-day/. Accessed: 2019-11-3.

[3] Anil Aswani et al. “Provably safe and robust learning-based model predictive control”.
In: Automatica 49.5 (2013), pp. 1216–1226.

[4] Juš Kocijan et al. “Gaussian process model based predictive control”. In: Proceedings
of the 2004 American Control Conference. Vol. 3. IEEE. 2004, pp. 2214–2219.

[5] Torsten Koller et al. “Learning-Based Model Predictive Control for Safe Exploration”.
In: 2018 IEEE Conference on Decision and Control (CDC). IEEE. 2018, pp. 6059–
6066.

[6] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. “Safe controller optimiza-
tion for quadrotors with Gaussian processes”. In: 2016 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2016, pp. 491–496.

[7] Lukas Hewing, Alexander Liniger, and Melanie N Zeilinger. “Cautious NMPC with
gaussian process dynamics for autonomous miniature race cars”. In: 2018 European
Control Conference (ECC). IEEE. 2018, pp. 1341–1348.

[8] Enrico Terzi et al. “Learning multi-step prediction models for receding horizon control”.
In: 2018 European Control Conference (ECC). IEEE. 2018, pp. 1335–1340.

[9] Sarah Dean et al. “Safely learning to control the constrained linear quadratic regula-
tor”. In: 2019 American Control Conference (ACC). IEEE. 2019, pp. 5582–5588.

[10] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for linear and hybrid
systems. Cambridge University Press, 2017.

[11] Ugo Rosolia, Xiaojing Zhang, and Francesco Borrelli. “Data-driven predictive control
for autonomous systems”. In: Annual Review of Control, Robotics, and Autonomous
Systems 1 (2018), pp. 259–286.

[12] Benjamin Recht. “A tour of reinforcement learning: The view from continuous control”.
In: Annual Review of Control, Robotics, and Autonomous Systems (2018).

https://www.tuxera.com/blog/autonomous-and-adas-test-cars-produce-over-11-tb-of-data-per-day/
https://www.tuxera.com/blog/autonomous-and-adas-test-cars-produce-over-11-tb-of-data-per-day/
https://www.tuxera.com/blog/autonomous-and-adas-test-cars-produce-over-11-tb-of-data-per-day/


BIBLIOGRAPHY 151

[13] Dimitri P Bertsekas. “Biased Aggregation, Rollout, and Enhanced Policy Improvement
for Reinforcement Learning”. In: Lab. for Information and Decision Systems Report,
MIT (2018).

[14] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Vol. 5. Athena
Scientific Belmont, MA, 1996.

[15] Francesco Borrelli. Constrained optimal control of linear and hybrid systems. Vol. 290.
Springer, 2003.

[16] Elmer G Gilbert and K Tin Tan. “Linear systems with state and control constraints:
The theory and application of maximal output admissible sets”. In: IEEE Transactions
on Automatic control 36.9 (1991), pp. 1008–1020.

[17] Yuandan Lin, Eduardo Sontag, and Yuan Wang. “Various results concerning set input-
to-state stability”. In: Decision and Control, 1995., Proceedings of the 34th IEEE Con-
ference on. Vol. 2. IEEE. 1995, pp. 1330–1335.

[18] Zhong-Ping Jiang and Yuan Wang. “Input-to-state stability for discrete-time nonlinear
systems”. In: Automatica 37.6 (2001), pp. 857–869.

[19] Paul J Goulart, Eric C Kerrigan, and Jan M Maciejowski. “Optimization over state
feedback policies for robust control with constraints”. In: Automatica 42.4 (2006),
pp. 523–533.

[20] Hassan K Khalil and JW Grizzle. Nonlinear systems. Vol. 3. Prentice hall Upper Saddle
River, NJ, 2002.

[21] Lars Grüne and Christopher M Kellett. “ISS-Lyapunov functions for discontinuous
discrete-time systems”. In: IEEE Transactions on Automatic Control 59.11 (2014),
pp. 3098–3103.

[22] Christopher M Kellett. “A compendium of comparison function results”. In: Mathe-
matics of Control, Signals, and Systems 26.3 (2014), pp. 339–374.

[23] Carlos E Garcia, David M Prett, and Manfred Morari. “Model predictive control:
theory and practice-a survey”. In: Automatica 25.3 (1989), pp. 335–348.

[24] Manfred Morari and Jay H Lee. “Model predictive control: past, present and future”.
In: Computers & Chemical Engineering 23.4 (1999), pp. 667–682.

[25] David Q Mayne et al. “Constrained model predictive control: Stability and optimality”.
In: Automatica 36.6 (2000), pp. 789–814.

[26] J. Rawlings and D. Mayne. Model Predictive Control: Theory and Design. Nob Hill
Publishing, 2009.

[27] E. F. Camacho and C. Bordons. Model Predictive Control. Springer Verlag, 2013.

[28] Kurtland Chua et al. “Deep reinforcement learning in a handful of trials using prob-
abilistic dynamics models”. In: Advances in Neural Information Processing Systems.
2018, pp. 4759–4770.



BIBLIOGRAPHY 152

[29] Ugo Rosolia and Francesco Borrelli. “Learning how to autonomously race a car: a
predictive control approach”. In: IEEE Transactions on Control Systems Technology
(2019).

[30] Kwang Soon Lee and Jay H Lee. “Model predictive control for nonlinear batch pro-
cesses with asymptotically perfect tracking”. In: Computers & Chemical Engineering
21 (1997), S873–S879.

[31] Chris J Ostafew, Angela P Schoellig, and Timothy D Barfoot. “Learning-based non-
linear model predictive control to improve vision-based mobile robot path-tracking
in challenging outdoor environments”. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2014, pp. 4029–4036.

[32] Kwang S Lee and Jay H Lee. “Convergence of constrained model-based predictive con-
trol for batch processes”. In: IEEE Transactions on Automatic Control 45.10 (2000),
pp. 1928–1932.

[33] Jay H Lee, Kwang S Lee, and Won C Kim. “Model-based iterative learning control
with a quadratic criterion for time-varying linear systems”. In: Automatica 36.5 (2000),
pp. 641–657.

[34] Richard S Sutton. “Learning to predict by the methods of temporal differences”. In:
Machine learning 3.1 (1988), pp. 9–44.

[35] Steven J Bradtke and Andrew G Barto. “Linear least-squares algorithms for temporal
difference learning”. In: Machine learning 22.1-3 (1996), pp. 33–57.

[36] Marko Bacic et al. “General interpolation in MPC and its advantages”. In: IEEE
Transactions on Automatic Control 48.6 (2003), pp. 1092–1096.

[37] Florian D Brunner, Mircea Lazar, and Frank Allgöwer. “Stabilizing linear model pre-
dictive control: On the enlargement of the terminal set”. In: 2013 European Control
Conference (ECC). IEEE. 2013, pp. 511–517.

[38] Chris J Ostafew, Angela P Schoellig, and Timothy D Barfoot. “Robust constrained
learning-based NMPC enabling reliable mobile robot path tracking”. In: The Interna-
tional Journal of Robotics Research 35.13 (2016), pp. 1547–1563.

[39] Xiaonan Lu and Mark Cannon. “Robust adaptive tube model predictive control”. In:
2019 American Control Conference (ACC). IEEE. 2019, pp. 3695–3701.

[40] Matthias Lorenzen, Mark Cannon, and Frank Allgöwer. “Robust MPC with recursive
model update”. In: Automatica 103 (2019), pp. 461–471.

[41] Matthias Lorenzen, Frank Allgöwer, and Mark Cannon. “Adaptive model predic-
tive control with robust constraint satisfaction”. In: IFAC-PapersOnLine 50.1 (2017),
pp. 3313–3318.

[42] Marko Tanaskovic et al. “Adaptive model predictive control for constrained linear
systems”. In: 2013 European Control Conference (ECC). IEEE. 2013, pp. 382–387.



BIBLIOGRAPHY 153

[43] Marko Tanaskovic et al. “Adaptive receding horizon control for constrained MIMO
systems”. In: Automatica 50.12 (2014), pp. 3019–3029.

[44] Monimoy Bujarbaruah et al. “Adaptive MPC for Iterative Tasks”. In: 2018 IEEE
Conference on Decision and Control (CDC) (2018), pp. 6322–6327.

[45] Monimoy Bujarbaruah, Xiaojing Zhang, and Francesco Borrelli. “Adaptive MPC with
Chance Constraints for FIR Systems”. In: 2018 Annual American Control Conference
(ACC). June 2018, pp. 2312–2317.

[46] Monimoy Bujarbaruah et al. “Adaptive MPC under time varying uncertainty: Robust
and Stochastic”. In: arXiv preprint arXiv:1909.13473 (2019).

[47] Alberto Bemporad and Manfred Morari. “Robust model predictive control: A survey”.
In: Robustness in identification and control. Springer, 1999, pp. 207–226.

[48] James Fleming, Basil Kouvaritakis, and Mark Cannon. “Robust tube MPC for linear
systems with multiplicative uncertainty”. In: IEEE Transactions on Automatic Control
60.4 (2014), pp. 1087–1092.

[49] Martin Evans, Mark Cannon, and Basil Kouvaritakis. “Robust and stochastic linear
MPC for systems subject to multiplicative uncertainty”. In: IFAC Proceedings Volumes
45.17 (2012), pp. 335–341.

[50] Felix Berkenkamp and Angela P Schoellig. “Safe and robust learning control with Gaus-
sian processes”. In: 2015 European Control Conference (ECC). IEEE. 2015, pp. 2496–
2501.

[51] Enrico Terzi et al. “Learning-based predictive control for linear systems: a unitary
approach”. In: Automatica 108 (2019), p. 108473.

[52] Enrico Terzi et al. “Robust predictive control with data-based multi-step prediction
models”. In: 2018 European Control Conference (ECC). IEEE. 2018, pp. 1710–1715.

[53] Sarah Dean et al. “Regret bounds for robust adaptive control of the linear quadratic
regulator”. In: Advances in Neural Information Processing Systems. 2018, pp. 4188–
4197.

[54] Yuh-Shyang Wang, Nikolai Matni, and John C Doyle. “A system level approach to
controller synthesis”. In: IEEE Transactions on Automatic Control (2019).

[55] Jaime F Fisac et al. “A general safety framework for learning-based control in uncertain
robotic systems”. In: IEEE Transactions on Automatic Control (2018).

[56] Shahab Kaynama et al. “The continual reachability set and its computation using
maximal reachability techniques”. In: 2011 50th IEEE Conference on Decision and
Control and European Control Conference. IEEE. 2011, pp. 6110–6115.

[57] John Lygeros, Claire Tomlin, and Shankar Sastry. “Controllers for reachability speci-
fications for hybrid systems”. In: Automatica 35.3 (1999), pp. 349–370.



BIBLIOGRAPHY 154

[58] Alexander Liniger and John Lygeros. “Real-time control for autonomous racing based
on viability theory”. In: IEEE Transactions on Control Systems Technology 99 (2017),
pp. 1–15.

[59] Kim P Wabersich and Melanie N Zeilinger. “Linear model predictive safety certification
for learning-based control”. In: 2018 IEEE Conference on Decision and Control (CDC).
IEEE. 2018, pp. 7130–7135.

[60] Franco Blanchini and Felice Andrea Pellegrino. “Relatively optimal control and its
linear implementation”. In: IEEE Transactions on Automatic Control 48.12 (2003),
pp. 2151–2162.

[61] Ugo Rosolia and Francesco Borrelli. “Learning model predictive control for iterative
tasks: a computationally efficient approach for linear system”. In: IFAC-PapersOnLine
50.1 (2017), pp. 3142–3147.

[62] Ugo Rosolia and Francesco Borrelli. “Learning Model Predictive Control for Itera-
tive Tasks. A Data-Driven Control Framework.” In: IEEE Transactions on Automatic
Control (2017).

[63] Colin N Jones and Manfred Morari. “Polytopic approximation of explicit model predic-
tive controllers”. In: IEEE Transactions on Automatic Control 55.11 (2010), pp. 2542–
2553.

[64] Steven Diamond and Stephen Boyd. “CVXPY: A Python-Embedded Modeling Lan-
guage for Convex Optimization”. In: Journal of Machine Learning Research 17.83
(2016), pp. 1–5.

[65] Lester E Dubins. “On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents”. In: American Journal
of mathematics 79.3 (1957), pp. 497–516.

[66] Yiqi Gao et al. “Predictive control of autonomous ground vehicles with obstacle avoid-
ance on slippery roads”. In: ASME 2010 dynamic systems and control conference.
American Society of Mechanical Engineers. 2010, pp. 265–272.

[67] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media,
2011.

[68] Francesco Bullo et al. “Dynamic vehicle routing for robotic systems”. In: Proceedings
of the IEEE 99.9 (2011), pp. 1482–1504.

[69] Yoshiaki Kuwata et al. “Motion planning for urban driving using RRT”. In: Intelli-
gent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on,
pp. 1681–1686.

[70] Sertac Karaman and Emilio Frazzoli. “Incremental sampling-based algorithms for op-
timal motion planning”. In: Robotics Science and Systems VI 104 (2010).

[71] Hans Pirnay, Rodrigo López-Negrete, and Lorenz T Biegler. “Optimal sensitivity based
on IPOPT”. In: Mathematical Programming Computation 4.4 (2012), pp. 307–331.



BIBLIOGRAPHY 155

[72] Daniel Liberzon. Calculus of variations and optimal control theory: a concise introduc-
tion. Princeton University Press, 2011.

[73] David Q Mayne et al. “Constrained model predictive control: Stability and optimality”.
In: Automatica 36.6 (2000), pp. 789–814.

[74] Irving Bogner and F Louis Kazda. “An investigation of the switching criteria for higher
order contactor servomechanisms”. In: Transactions of the American Institute of Elec-
trical Engineers, Part II: Applications and Industry 73.3 (1954), pp. 118–127.

[75] Richard Bellman, Irving Glicksberg, and Oliver Gross. “On the bang-bang control
problem”. In: Quarterly of Applied Mathematics 14.1 (1956), pp. 11–18.

[76] Revaz Valer’yanovich Gamkrelidze. On the theory of optimal processes in linear sys-
tems. Tech. rep. Joint Publications Research Service Arlington VA, 1961.

[77] Joseph P LaSalle. “The time optimal control problem”. In: Contributions to the theory
of nonlinear oscillations 5 (1959), pp. 1–24.

[78] VG Boltyanskiy, Revaz V Gamkrelidze, and LS Pontryagin. Theory of optimal pro-
cesses. Tech. rep. Joint Publications Research Service Arlington VA, 1961.

[79] Ugo Rosolia and Francesco Borrelli. “Learning model predictive control for iterative
tasks: A computationally efficient approach for linear system”. In: IFAC-PapersOnLine
50.1 (2017), pp. 3142–3147.

[80] Pierre OM Scokaert and DQ Mayne. “Min-max feedback model predictive control for
constrained linear systems”. In: IEEE Transactions on Automatic control 43.8 (1998),
pp. 1136–1142.

[81] Alberto Bemporad, Francesco Borrelli, and Manfred Morari. “Min-max control of con-
strained uncertain discrete-time linear systems”. In: IEEE Transactions on automatic
control 48.9 (2003), pp. 1600–1606.

[82] Basil Kouvaritakis and Mark Cannon. Model Predictive Control: Classical, Robust and
Stochastic. Springer, 2015.

[83] Alain Micaelli and Claude Samson. “Trajectory tracking for unicycle-type and two-
steering-wheels mobile robots”. PhD thesis. INRIA, 1993.

[84] Vassiliy A Epanechnikov. “Non-parametric estimation of a multivariate probability
density”. In: Theory of Probability & Its Applications 14.1 (1969), pp. 153–158.

[85] Bartolomeo Stellato et al. “OSQP: An operator splitting solver for quadratic pro-
grams”. In: 2018 UKACC 12th International Conference on Control (CONTROL).
IEEE. 2018, pp. 339–339.

[86] Maximilian Brunner et al. “Repetitive learning model predictive control: An autonomous
racing example”. In: 2017 IEEE 56th Annual Conference on Decision and Control
(CDC). IEEE. 2017, pp. 2545–2550.



BIBLIOGRAPHY 156

[87] Paul A Theodosis and J Christian Gerdes. “Nonlinear optimization of a racing line
for an autonomous racecar using professional driving techniques”. In: ASME 2012 5th
Annual Dynamic Systems and Control Conference. American Society of Mechanical
Engineers. 2012, pp. 235–241.


	Contents
	List of Figures
	List of Tables
	Introduction
	Outline

	Invariant Sets and Control Lyapunov Functions
	Invariant, Reachable and Controllable Sets for Deterministic Systems
	Invariant, Reachable and Controllable Sets for Uncertain Systems
	Lyapunov and Input-to-State Stability

	Predictive Control Policies: Synthesis and Improvement
	Dynamic Optimization and Predictive Control
	Review of Iterative Improvement Strategies
	Safety and Performance in Predictive Control

	LMPC for Deterministic Systems
	Problem Formulation
	Safe Set
	Q-functions
	Control Design
	Properties
	Examples
	Appendix

	Time-Varying LMPC for Time Optimal Problems
	Problem Formulation
	Safe Set and Value Function Approximation
	Control Design
	Properties
	Data Reduction
	Examples
	Appendix

	LMPC for Uncertain Systems
	Problem Formulation
	Safe Set
	Q-function
	Control Design
	Sampled Based Implementation
	Examples

	Feedback Policy Parametrization for Robust LMPC
	Problem Formulation
	Preliminaries
	Control Design
	Properties
	Examples
	Appendix

	Certainty Equivalent LMPC
	Problem Statement
	Controller Design
	Properties
	Example

	Autonomous Racing Experiments
	Problem Formulation
	Controller Design
	System Identification Strategy
	Experiments

	Data-Based Policy
	Problem Formulation
	Proposed Approach
	Properties
	Examples
	Appendix

	Conclusions
	Future Work

	Bibliography

