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Success Stories from Control Theory
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Today’s Example

Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia



Lessons from Classical Approaches

Predicted Cost

Safe Region

» Predicted trajectory given by Prediction Model
» Safe region estimated by the Safe Set
» Predicted cost estimated by
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Three key components to learn

Prediction Model
Model-based RL

Data Efficient Learning!

Safety-critical Control

Safe Set



Iterative Tasks

Iterative data collection and policy update
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Iterative Tasks — Drone Example

» State
“p «— |P| = position
~ |v|  |velocity
» Input u = a = acceleration
» Dynamics
=l
ey 5 Vik+1 0 1] [wk] [a
Goal Height
» Cost x,;r Qxx + u,;r Ruy
» Constraints
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h S5 | < |vi| < |5
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Limited actuation!
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Iterative Tasks — Drone Example
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» [teration = one execution of the task

» Objective: Drive the drone optimally from the starting state to the goal state
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Learning Model Predictive Control (LMPC)
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Learning the Safe Set
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Definition: Sampled Safe Set
SS' = {Stored Data}

Set of states from which
the task can be completed!
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Iteration 3

Starting State

(?ff»?‘?:/ First Iteration

Definition: Sampled Safe Set
SS7 = {Stored Data at all iterations}




Iteration 3

rting State

First Iteration

Definition: Sampled Safe Set

Set of states from which
the task can be completed!

SS7 = {Stored Data at all iterations}




Iteration 3

Starting State

First Iteration

Goal State

v

N
J




Iteration 3

Starting State

First Iteration

-

Goal State

v

Definition: Convex Safe Set

CS? = Conv({Stored Data at all iterations})




Iteration 3

Starting State

First Iteration

-

Goal State

v

Definition: Convex Safe Set

Set of states from which
the task can be completed!

CS? = Conv({Stored Data at all iterations})




Learning Model Predictive Control (LMPC) — Key Idea

New Current position
ey - A /

. B e v
g s
L E
%—— < 2
7 1

v

Safe Set

Algorithm steps:
» Get current state
» Plan a trajectory
» Execute the action



Learning Model Predictive Control (LMPC) — Key Idea

New Current position

Sy /

R

v

Algorithm steps:
» Get current state
» Plan a trajectory
» Execute the action



Value Function Estimation

rting State

First Iteration




Value Function Estimation

rting State
First Iteration

Goal State

'

ri = state at time k of iteration i




Value Function Estimation

Starting State

Goal State

'

First Iteration

ri = state at time k of iteration i

J; = cumulative cost from xj,

v



Value Function Estimation
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Value Function

V7 () = Interpolation of the set of data {{(Ji, =)} _o}5

ri = state at time k of iteration i
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LMPC Summary

At each time t of iteration j, solve
N-1

J(z(t)) = min Z (x,IQajk + u,;rRuk) + VI zy)

UQ gy UN—1
k=0

s.t. Trai1 = f(xk, uk),
o = x(t),
xp €X, up €U,
zn € 8§
Vke[0,--- , N — 1]

Guarantees for constrained (linear) systems [1,2]

The properties of the (convex) safe set and (convex) V-function allows us to guarantee:

» Safety: constraint satisfaction at iteration j — satisfaction at iteration j+1

» Non-decreasing Performance: closed-loop cost at iteration j >= closed-loop cost at iteration j+1
» Performance Improvement: closed-loop cost strictly deceasing at each iteration (LICQ required)
» (Global) optimality: steady state trajectory is optimal for the original problem (LICQ required)

[1] U. Rosolia, F. Borrelli. “Learning model predictive control for iterative tasks. a data-driven control framework.” IEEE Transactions on Automatic Control (2018).
[2] U. Rosolia, F. Borrelli. “Learning model predictive control for iterative tasks: A computationally efficient approach for linear system.” IFAC-PapersOnLine (2017)
[3] U.Rosolia, Y. Lian, E. Maddalena, G. Ferrari-Trecate, and C. N. Jones. "On the Optimality and Convergence Properties of the Iterative Learning Model Predictive Controller." IEEE Transactions on Automatic Control (2022).



Autonomous Racing

Goal: Minimize lap time '

Requirement: Guarantee safety
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Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia



Lap Time
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Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia



Velocity Profile at Convergence (Curve 1)
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Velocity Profile at Convergence (Chicane)
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Learning Model Predictictive Control
for Autonomous Racing



The key components

» Predicted trajectory given by prediction model
» Predicted cost estimated by
» Safe region estimated by the safe set

Prediction Model
Model-based RL

Data Efficient Learning!

Safety-critical Control

Safe Set
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The key components

» Predicted trajectory given by prediction model
» Predicted cost estimated by
» Safe region estimated by the safe set

Prediction Model
Model-based RL

Data Efficient Learning!

Safety-critical Control
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Skill improvement Skill automation




Do you need the safe set? — Yes
LMPC without Invariant Set

The controller extrapolates the V-function on the Vx dimension




Do you need to Predict to Learn? Yes

When the LMPC horizon is N = 1 the controller
» solves the Bellman equation using the V-function as value function approximation
» does not explore the state space as it cannot plan outside the safe set
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The three phases of learning

Skill acquisition

Skill improvement

Skill automation
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Do you need to Predict at Convergence? No

Lap Time at each iteration

Average CPU Load at each iteration
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Do you need to Predict at Convergence? No
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Do you need to Predict at Convergence? No
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Do you need to Predict at Convergence? No
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The three phases of learning

Skill acquisition Skill improvement Skill automation




Code available online

B urosolia / RacingLMPC

<> Code (D) Issues 4 I Pull requests 1

¥ master ~ ¥ 7 branches O 11tag

3 urosolia adding mpe

W osrc adding mpe
.gitignore remove .idea

[ README.md update README

‘= README.md

for autonomous racing

learns from experience how to drive faster.

Lap: 31

(¥) Actions

Go to file

& Unwatch - 12

[ Projects [0 Wiki

b49c8Se on Oct 1, 2020 Y5 118 commits

8 months age
8 months ago

8 months ago

&

Learning Model Predictive Control (LMPC)

The Learning Model Predictive Control (LMPC) is a data-driven control framework
developed at UCB in the MPC lab. In this example, we implemented the LMPC for the
autonomous racing problem. The controller drives several laps on race track and it

-1 | = Closed-loap trajectory .

—8— Predicted Trajectary

-4 -3 -2 -1

1

2 3

¥r Star | 151 % Fork 43
I Security
About =1

Implementation of the
Learning Model Predictive
Controller for autonomous
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M Readme

Releases

O 11ags

Create a new release

Packages

Mo packages published
Publish your first package
Contributors 3

’ urosolia Ugo Rosolia
" sarahxdean Sarah Dean

< 14 Jun Z
junzengx14 Jun Zeng

Languages

® Python 100.0%

Thanks! Questions?

Course material online

3/30
4/01
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Advanced Topics in Machine Learning ., ...,
CS159-Caltech - Spring 2021

Lecture schedule
# Date Subject
0 3/30 Introduction

Topic 1—RL & Control
Discrete MDPs

Optimal Control

Model Predictive Control
Learning MPC

Model Learning in MPC

Planning Under Uncertainty and Project
Ideas

Learning

Predictive control & model-based reinforcement learning

Resources
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What is next?

» Partial Observability

» Multi-agent systems

» Hierarchy + Learning

» Optimize over strategies, not trajectories

Known Obstacles
Goal State

Uncertain Region

Moving Obstacle

Mid-level Low-level

High-level
Trajectory Planning Actuator Control

Decision Making

right , > T
left D /
©
<« | measure
Discrete time linear dynamics

Frequency 1/T Hz

e

N

Continuous time nonlinear system

Continuous Time

Abstraction with partial observations



System ID in Autonomous Racing

» Nonlinear Dynamical System,
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System ID in Autonomous Racing

» Nonlinear Dynamical System,
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System ID in Autonomous Racing
» Nonlinear Dynamical System,
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System ID in Autonomous Racing

» Nonlinear Dynamical System,
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Safe Sets and Value Functions Estimation via Sampling

O Controller #1

» Collect several trajectories with the
O Controller #2

same controller

goal set
h _ » Safe sets computed as before using
| ] multiple trajectories
& af ! > estimate either the
mean or worst-case cost
» All statement hold with some
T | probability that is proportional to the
| | | | | | amount of data

L1

U. Rosolia, and F. Borrelli. "Sample-based learning model predictive control for linear uncertain systems." In 2019 |IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019.
U. Rosolia, X. Zhang, and F. Borrelli. "Robust learning model predictive control for linear systems performing iterative tasks." IEEE Transactions on Automatic Control (2021).



Comparison with Approximate DP (aka RL)

» Some references:
<« Bertsekas paper connecting MPC and ADP [1], books on RL and OC [2,3]
<« Lewis and Vrabie survey [4]
< Recht survey [5]

» Learning MPC highlights
<« Continuous state and action formulation
« Constraints satisfaction
% V-function constructed locally based on cost/model driven exploration
<« V-function at stored state is “exact” and upperbounds at intermediate points

[1] D. Bertsekas, “Dynamic programming and suboptimal control: A survey from ADP to MPC.” European Journal of Control 11.4-5 (2005)

[2] D. Bertsekas, “Reinforcement learning and optimal control.” Athena Scientific, 2019.

[3] D. Bertsekas, “Distributed Reinforcement Learning” http://web.mit.edu/dimitrib/www/RL_2_Rollout_&_ Pl.pdf

[4] F. Lewis, Frank, and D. Vrabie. "Reinforcement learning and adaptive dynamic programming for feedback control." IEEE circuits and systems magazine 9.3 (2009)
[5] R. Benjamin. "A tour of reinforcement learning: The view from continuous control." Annual Review of Control, Robotics, and Autonomous Systems 2 (2019)



http://web.mit.edu/dimitrib/www/RL_2_Rollout_&_PI.pdf
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