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Optimal Trajectory System IdentificationTrajectory Tracking

Standard Control Pipeline
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Lessons from Classical Approaches

► Predicted trajectory given by Prediction Model

► Safe region estimated by the Safe Set

► Predicted cost estimated by Value Function

Predicted Trajectory

Safe Region

Predicted  Cost
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Safe Set

Safety-critical Control

Three key components to learn

Value FunctionPrediction Model
Model-free RLModel-based RL

Data Efficient Learning!



Iterative Tasks
Iterative data collection and policy update
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Goal Height

Limited actuation!
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Iterative Tasks – Drone Example
𝑝

𝑣

Goal State

Starting State

Iteration = one execution of the task

Objective: Drive the drone optimally from the starting state to the goal state

First Iteration

Second Iteration



Learning Model Predictive Control (LMPC)
Exploit historical data
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At each time t of iteration j, solve

LMPC Summary

The properties of the (convex) safe set and (convex) V-function allows us to guarantee:
Safety: constraint satisfaction at iteration j → satisfaction at iteration j+1
Non-decreasing Performance: closed-loop cost at iteration j >= closed-loop cost at iteration j+1
Performance Improvement: closed-loop cost strictly deceasing at each iteration (LICQ required)
(Global) optimality: steady state trajectory is optimal for the original problem (LICQ required)

Guarantees for constrained (linear) systems [1,2]

[1] U. Rosolia, F. Borrelli. “Learning model predictive control for iterative tasks. a data-driven control framework.” IEEE Transactions on Automatic Control (2018).
[2] U. Rosolia, F. Borrelli. “Learning model predictive control for iterative tasks: A computationally efficient approach for linear system.” IFAC-PapersOnLine (2017)
[3] U. Rosolia, Y. Lian, E. Maddalena, G. Ferrari-Trecate, and C. N. Jones. "On the Optimality and Convergence Properties of the Iterative Learning Model Predictive Controller." IEEE Transactions on Automatic Control (2022).



Goal: Minimize lap time

Requirement: Guarantee safety

Autonomous Racing
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Hyundai California Proving Ground



Starting Line

Finish Line

Hyundai California Proving Ground





Lap Time

The control action is 
computed using ~100 data 

points

The control policy is 
constructed using ~1k 

data points (last 2 laps)





Test Starts: LMPC accelerates

Breaking before entering the curve

Accelerating when exiting the curve

Sp
ee
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/s

Velocity Profile at Convergence (Curve 1)



Breaking

Accelerating

Sp
ee

d
 m

/s
Velocity Profile at Convergence (Chicane)





The key components
► Predicted trajectory given by prediction model

► Predicted cost estimated by value function

► Safe region estimated by the safe set





 Safe Set constructed using non-parametric estimation

 Model ensemble and input sampling strategies for MPC

 Knot tying task on real surgical robot with inefficient demos (red)

 Constraints: stay within 1 cm tube of reference trajectory

 SAVED successfully smooths + optimizes demos

Terminal Components via DNN

“Safety Augmented Value Estimation from Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks.”, B. Thananjeyan*, A. Balakrishna*, U. Rosolia, F. Li, R. 
McAllister, J. E. Gonzalez, S. Levine, F. Borrelli, K. Goldberg IEEE Robotics and Automation Letters (RA-L) (2020)

*= equal contribution

Brijen Ashwin
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Do you need the safe set? – Yes 
LMPC without Invariant Set
The controller extrapolates the V-function on the Vx dimension



Do you need to Predict to Learn? Yes
When the LMPC horizon is N = 1 the controller 

 solves the Bellman equation using the V-function as value function approximation
 does not explore the state space as it cannot plan outside the safe set 

Average CPU Load at each iteration

Lap Time at each iteration
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Control Policy

Average CPU Load at each iteration

Lap Time at each iteration

Stored Data

Value Function Approximation

Do you need to Predict at Convergence? No



The three phases of learning

Skill acquisition Skill improvement Skill automation



Thanks! Questions?

Code available online Course material online



What is next? 

► Partial Observability

► Multi-agent systems

► Hierarchy + Learning

► Optimize over strategies, not trajectories

Wind #2

Wind #1
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Local Linear Regression

Linearization around predicted trajectory

Kinematic Equations

 Nonlinear Dynamical System,

 Identifying the Dynamical System

Dynamic Equations

System ID in Autonomous Racing
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Safe Sets and Value Functions Estimation via Sampling

► Collect several trajectories with the 
same controller

► Safe sets computed as before using 
multiple trajectories

► Value functions estimate either the 
mean or worst-case cost

► All statement hold with some 
probability that is proportional to the 
amount of data

Controller #1
Controller #2

U. Rosolia, and F. Borrelli. "Sample-based learning model predictive control for linear uncertain systems." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019.
U. Rosolia, X. Zhang, and F. Borrelli. "Robust learning model predictive control for linear systems performing iterative tasks." IEEE Transactions on Automatic Control (2021).



 Some references:
❖  Bertsekas paper connecting MPC and ADP [1], books on RL and OC [2,3]
❖  Lewis and Vrabie survey [4]
❖  Recht survey [5]

 Learning MPC highlights
❖  Continuous state and action formulation
❖  Constraints satisfaction
❖  V-function constructed locally  based  on  cost/model  driven exploration
❖  V-function at stored state is “exact” and upperbounds at intermediate points

[1] D. Bertsekas, “Dynamic programming and suboptimal control: A survey from ADP to MPC.” European Journal of Control 11.4-5 (2005)
[2] D. Bertsekas, “Reinforcement learning and optimal control.” Athena Scientific, 2019.
[3] D. Bertsekas, “Distributed Reinforcement Learning” http://web.mit.edu/dimitrib/www/RL_2_Rollout_&_PI.pdf
[4] F. Lewis, Frank, and D. Vrabie. "Reinforcement learning and adaptive dynamic programming for feedback control." IEEE circuits and systems magazine 9.3 (2009)
[5] R. Benjamin. "A tour of reinforcement learning: The view from continuous control." Annual Review of Control, Robotics, and Autonomous Systems 2 (2019)

Comparison with Approximate DP (aka RL)

http://web.mit.edu/dimitrib/www/RL_2_Rollout_&_PI.pdf
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