

Learning Model Predictive Control for Iterative Tasks

Theory and Applications

Ugo Rosolia
Principal Research Scientist @ Lyric.tech

Work (mostly) done at UC Berkeley and Caltech

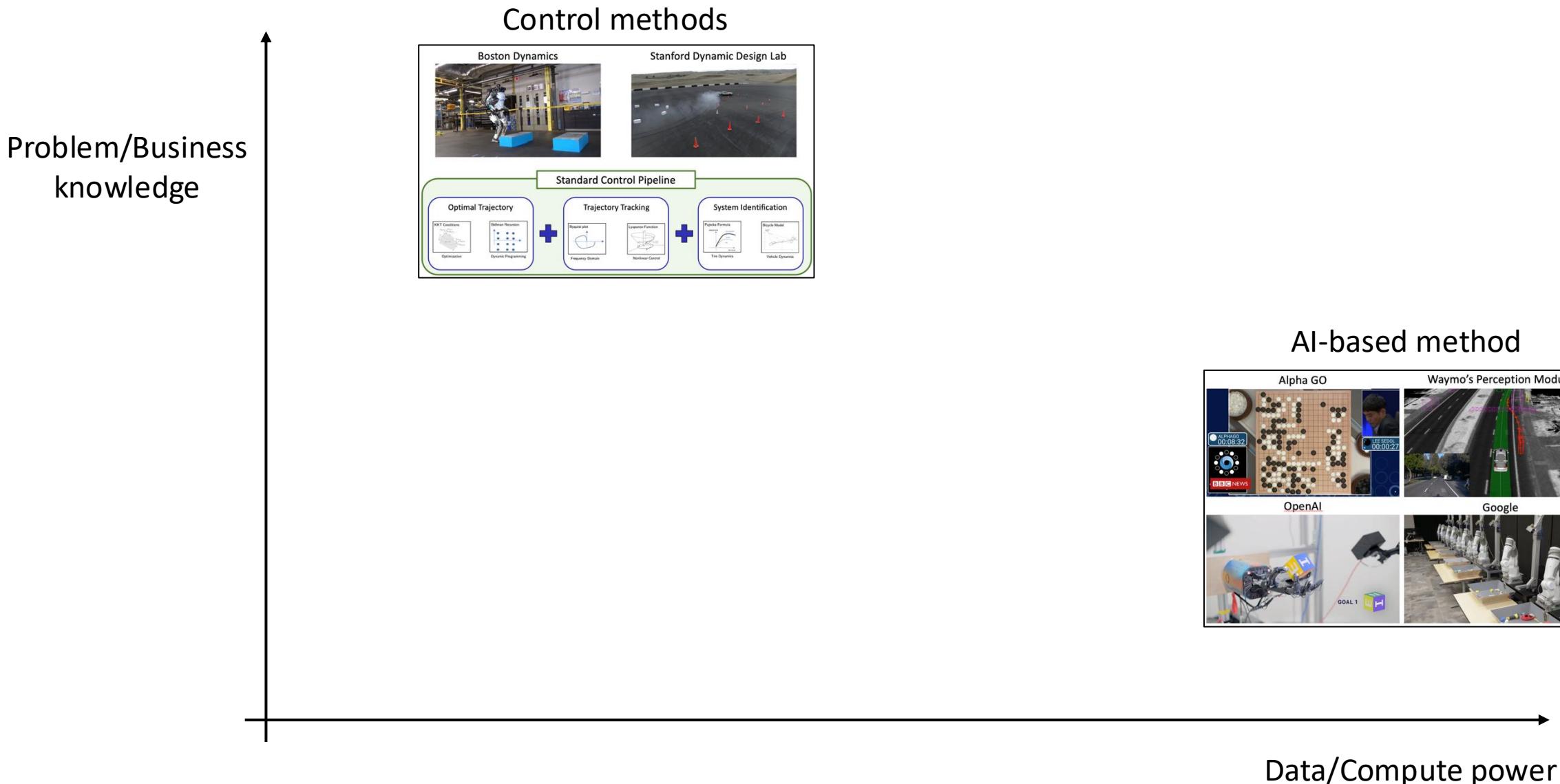
December 18th, 2025

Classic Approaches VS AI-based Strategies

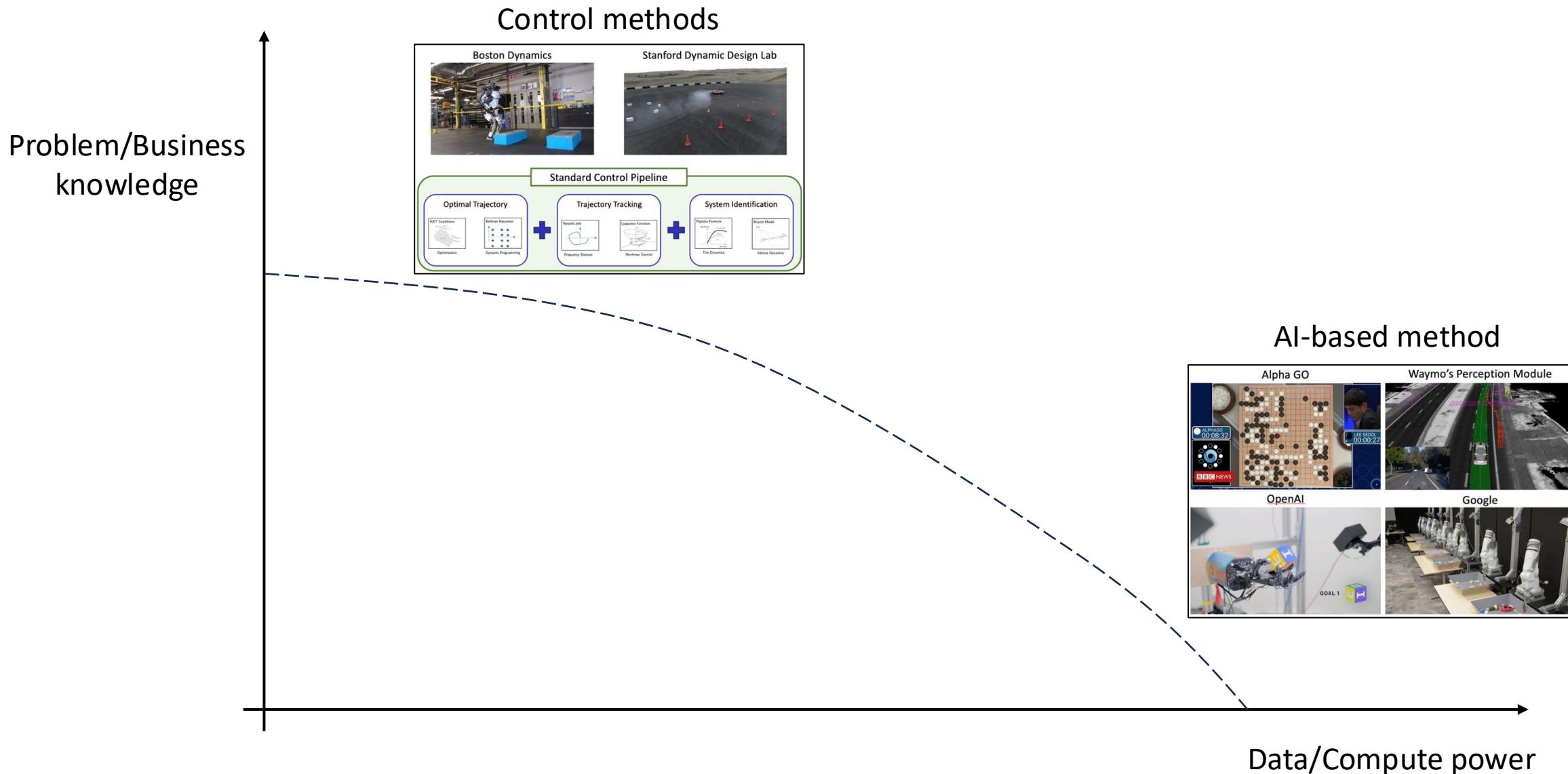
Classic Approaches VS AI-based Strategies

Classic Approaches VS AI-based Strategies

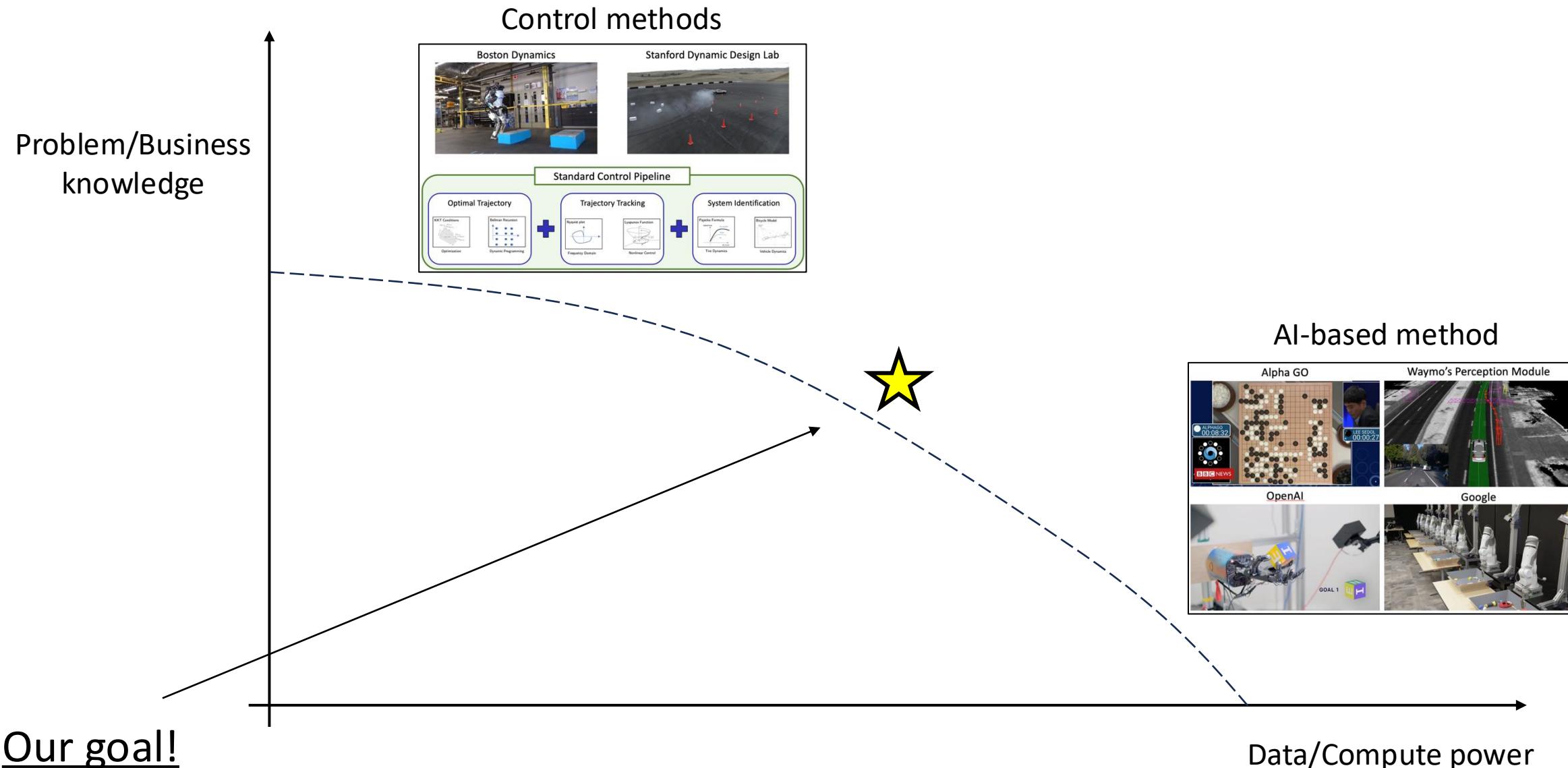
Classic Approaches VS AI-based Strategies



Classic Approaches VS AI-based Strategies

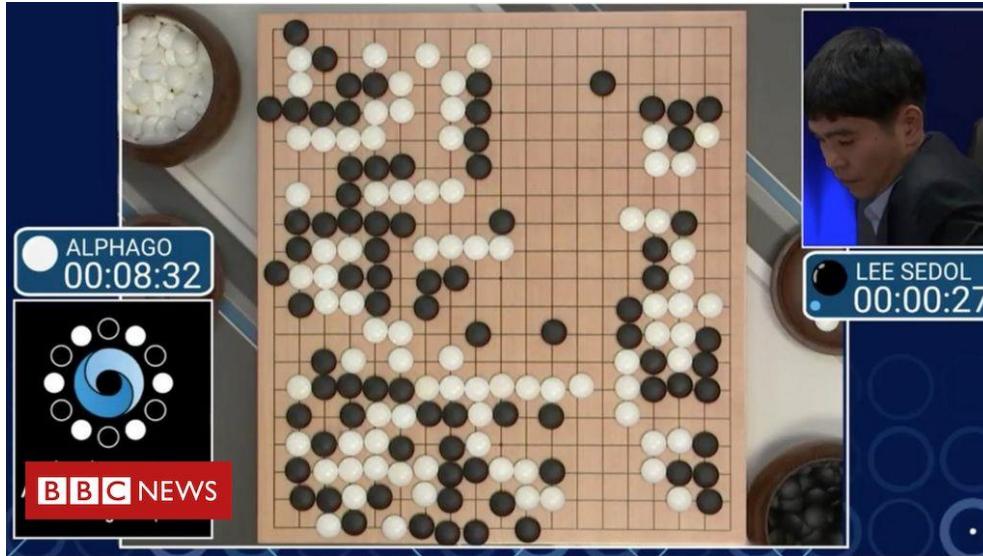


Classic Approaches VS AI-based Strategies

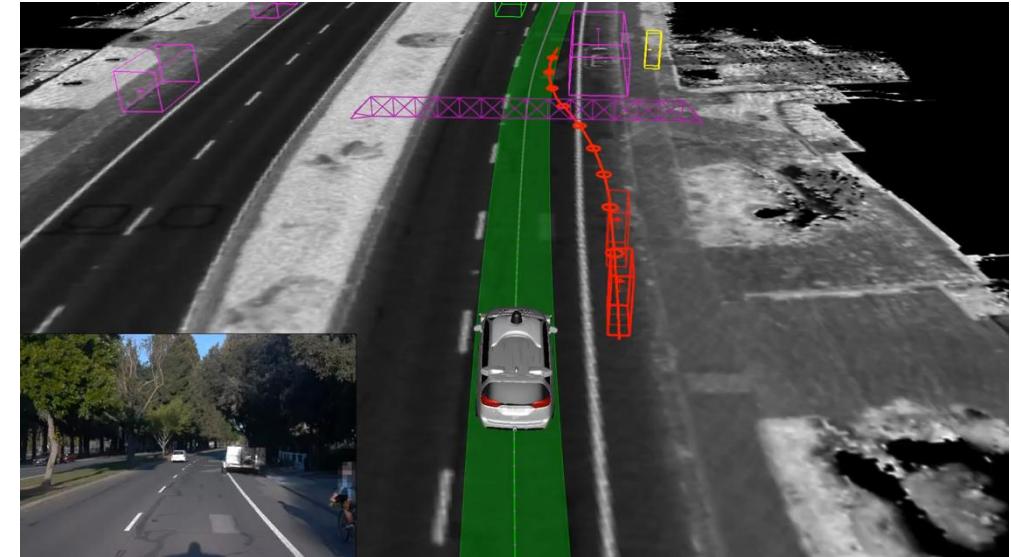


Success Stories from AI

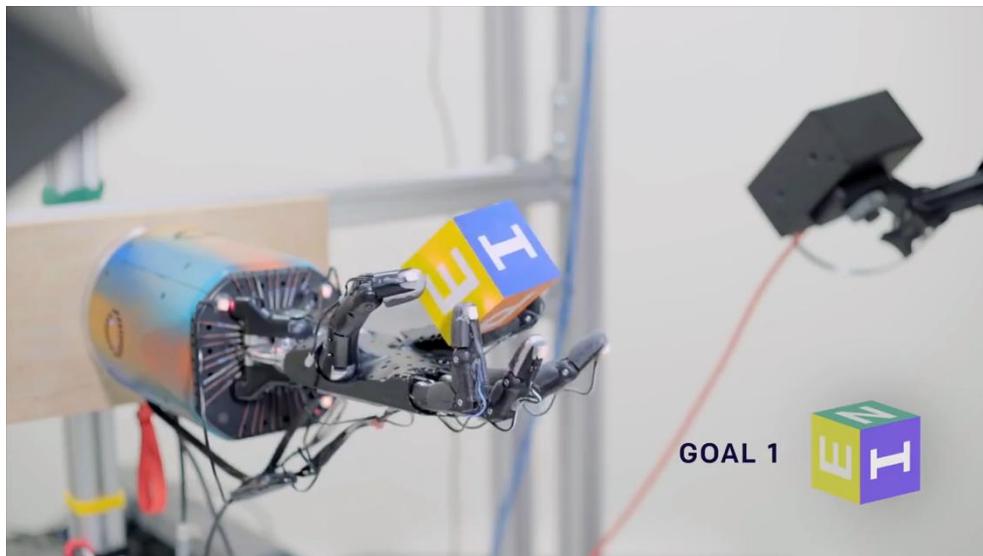
Alpha GO



Waymo's Perception Module



OpenAI



Google

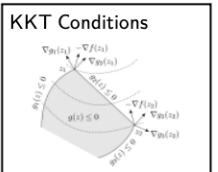
Success Stories from Control Theory

Boston Dynamics

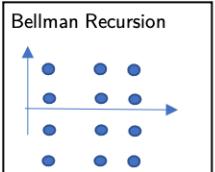
Stanford Dynamic Design Lab

Standard Control Pipeline

Optimal Trajectory

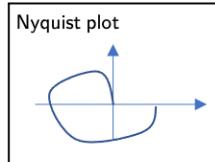


Optimization

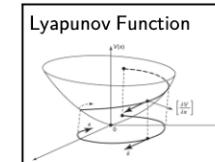


Dynamic Programming

Trajectory Tracking

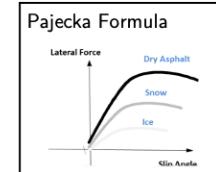


Frequency Domain

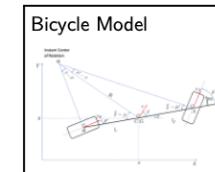


Nonlinear Control

System Identification

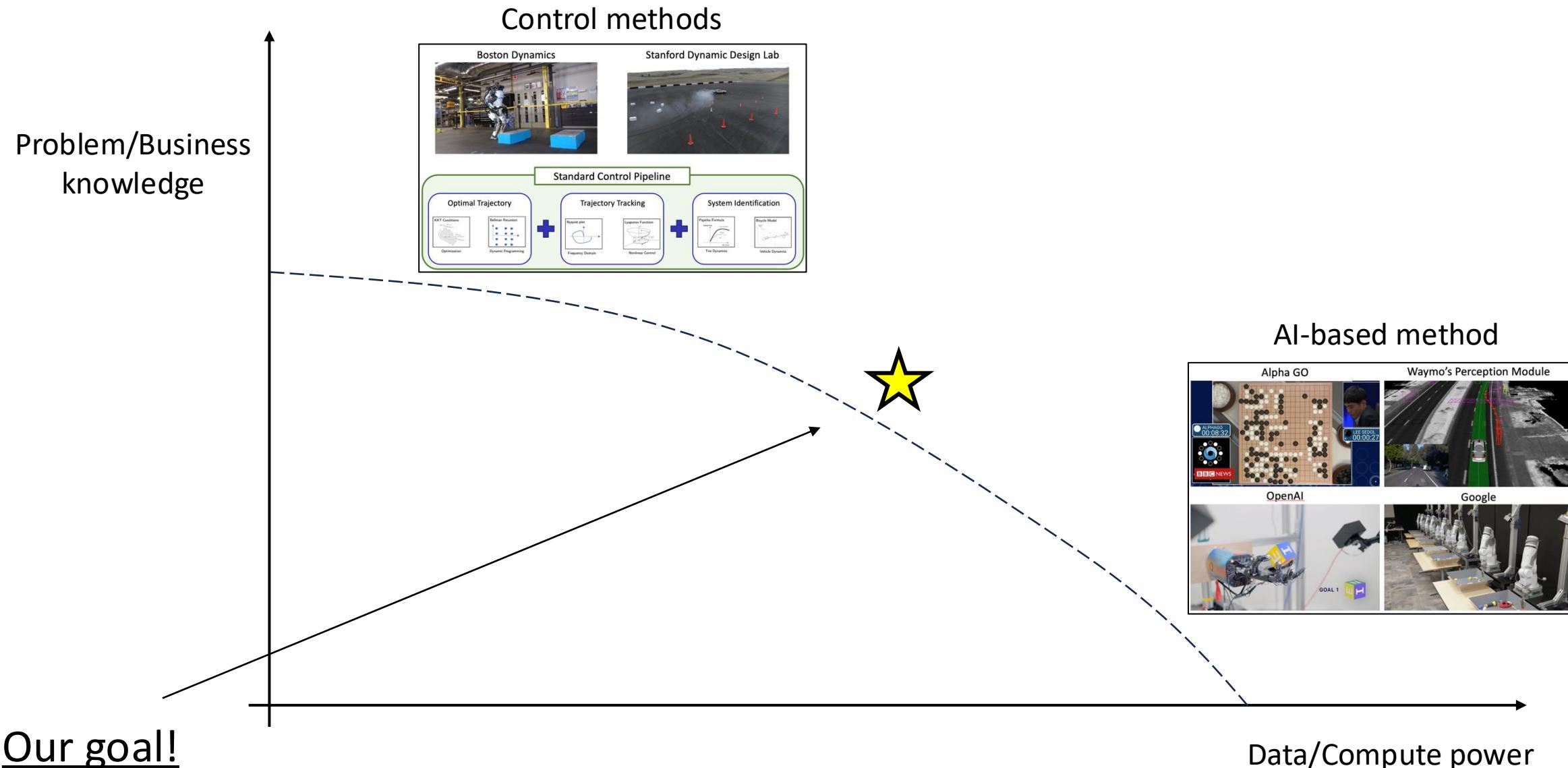


Tire Dynamics



Vehicle Dynamics

Classic Approaches VS AI-based Strategies

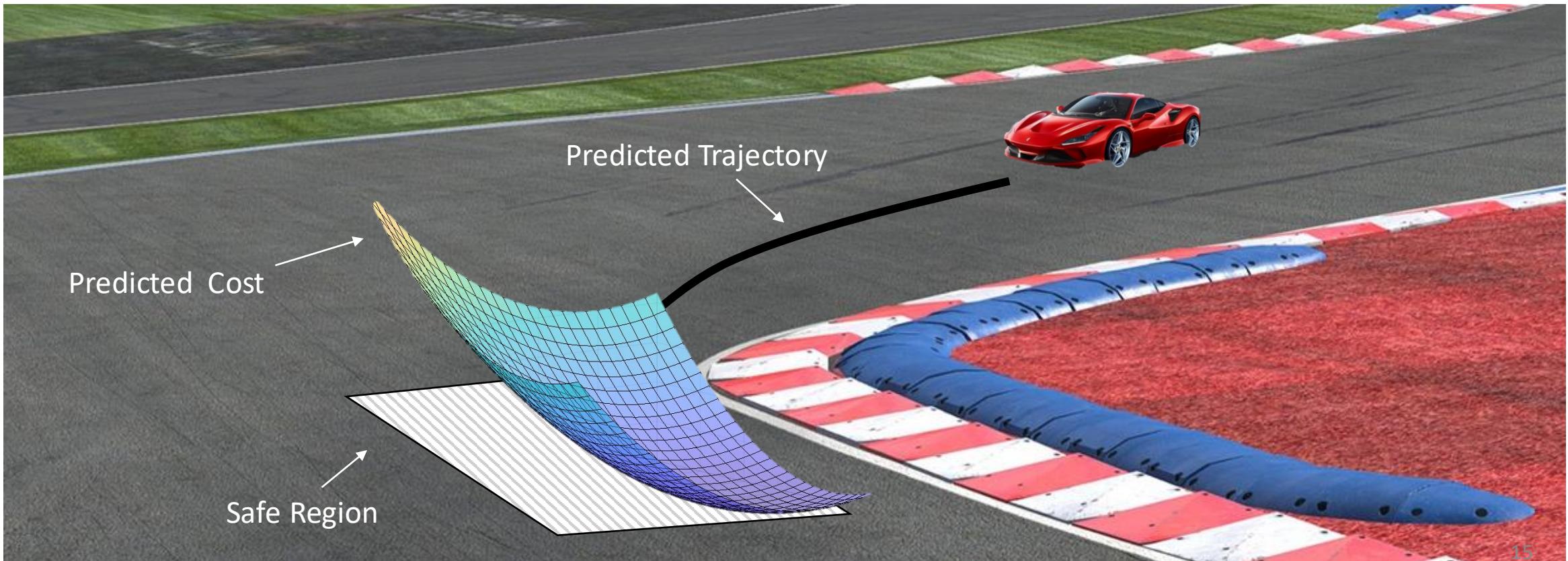


Today's Example

Learning Model Predictive Controller full-size
vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Lessons from Classical Approaches



- ▶ Predicted trajectory given by **Prediction Model**
- ▶ Safe region estimated by the **Safe Set**
- ▶ Predicted cost estimated by **Value Function**

Three key components to learn

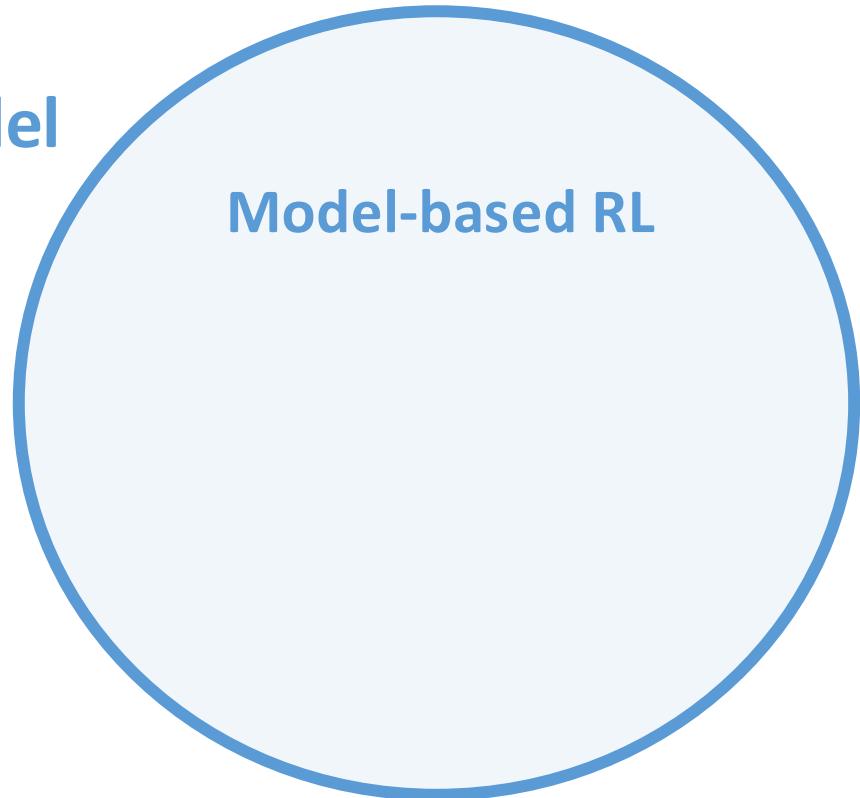
Prediction Model

Value Function

Safe Set

Three key components to learn

Prediction Model



Model-based RL

Value Function

Safe Set

Three key components to learn

Prediction Model

Model-based RL

Value Function

Model-free RL

Safe Set

Three key components to learn

Prediction Model

Model-based RL

Value Function

Model-free RL

Safety-critical Control

Safe Set

Three key components to learn

Prediction Model

Model-based RL

Value Function

Model-free RL

Safety-critical Control

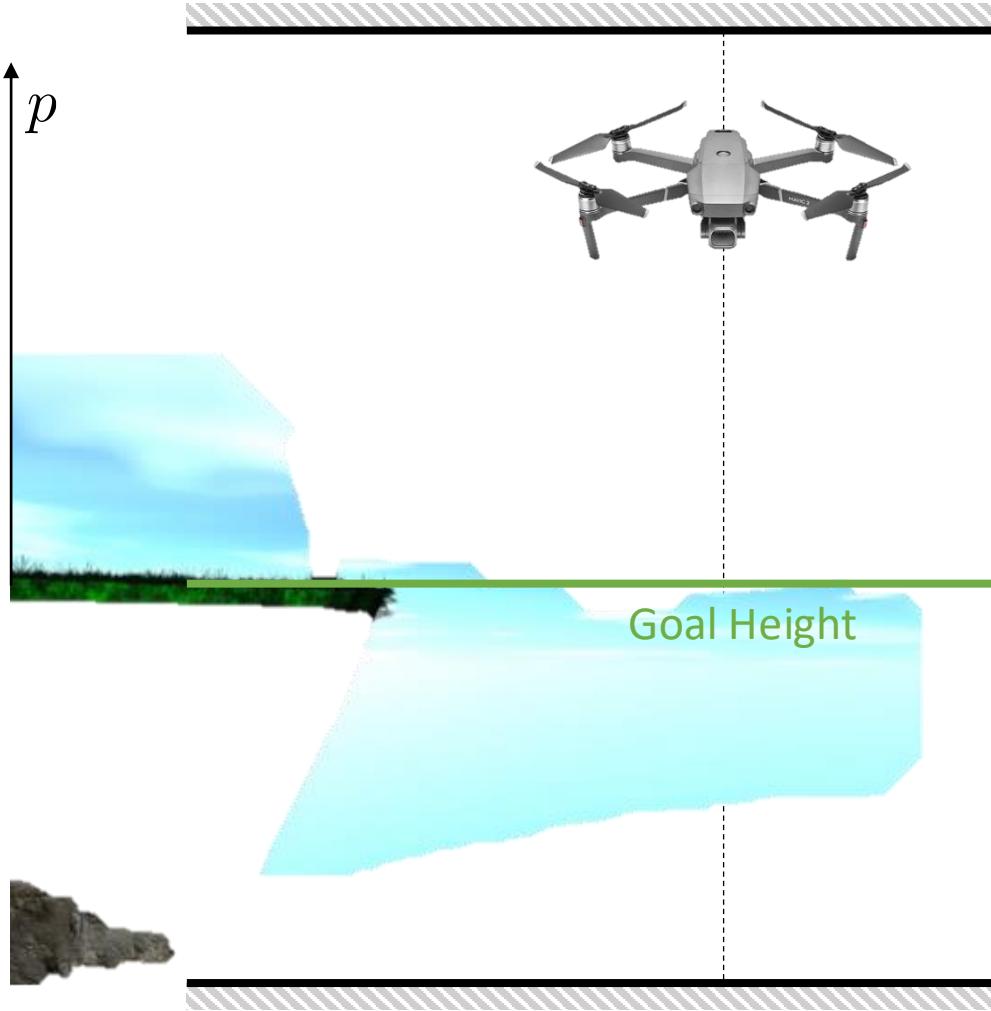
Safe Set

Data Efficient Learning!

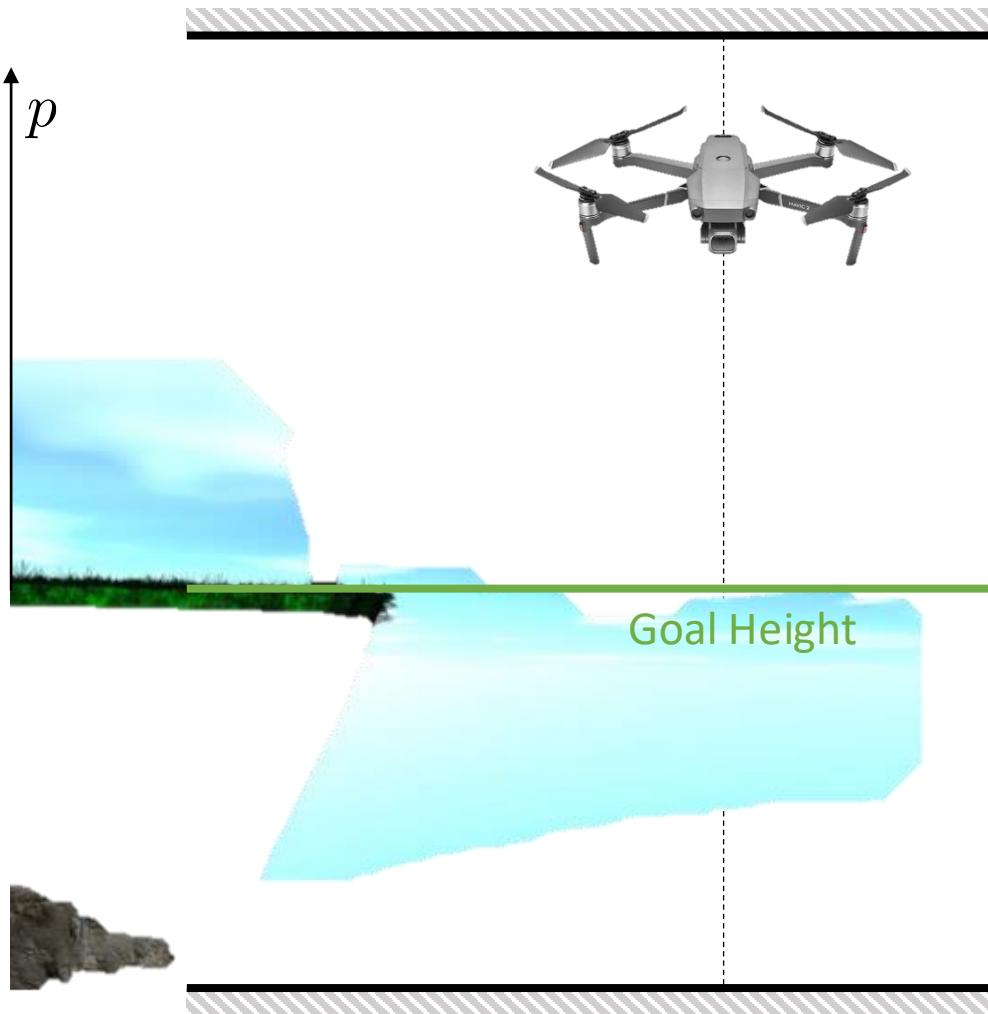
Iterative Tasks

Iterative data collection and policy update

Iterative Tasks – Drone Example



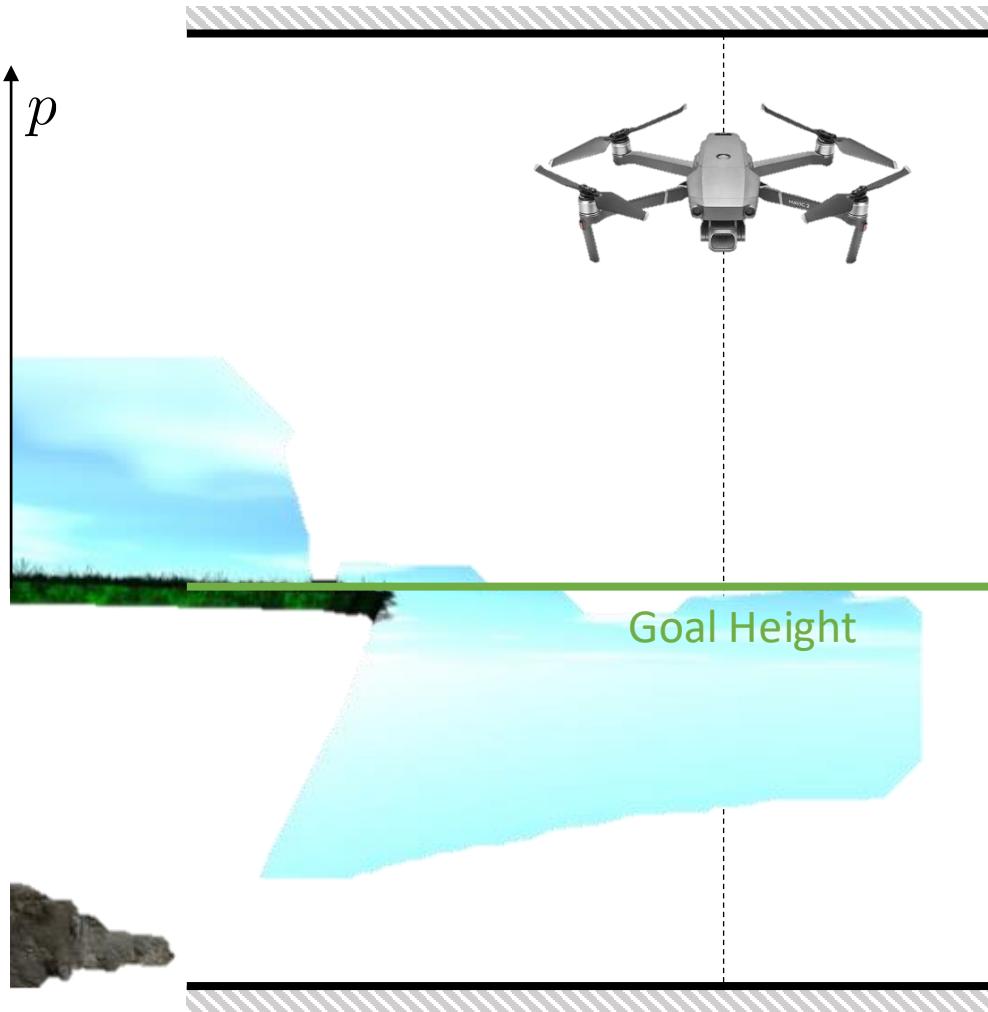
Iterative Tasks – Drone Example



► State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} \text{position} \\ \text{velocity} \end{bmatrix}$$

Iterative Tasks – Drone Example

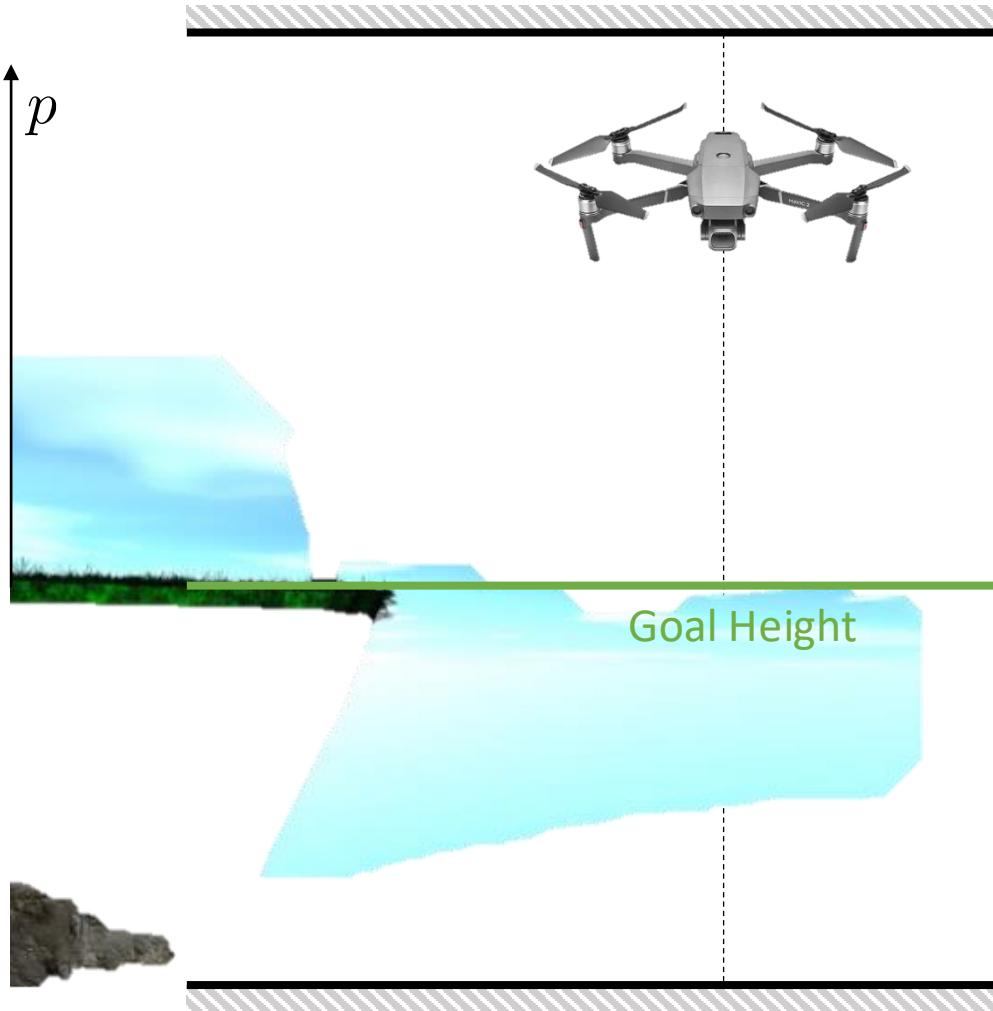


- ▶ State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} \text{position} \\ \text{velocity} \end{bmatrix}$$

- ▶ Input $u = a = \text{acceleration}$

Iterative Tasks – Drone Example



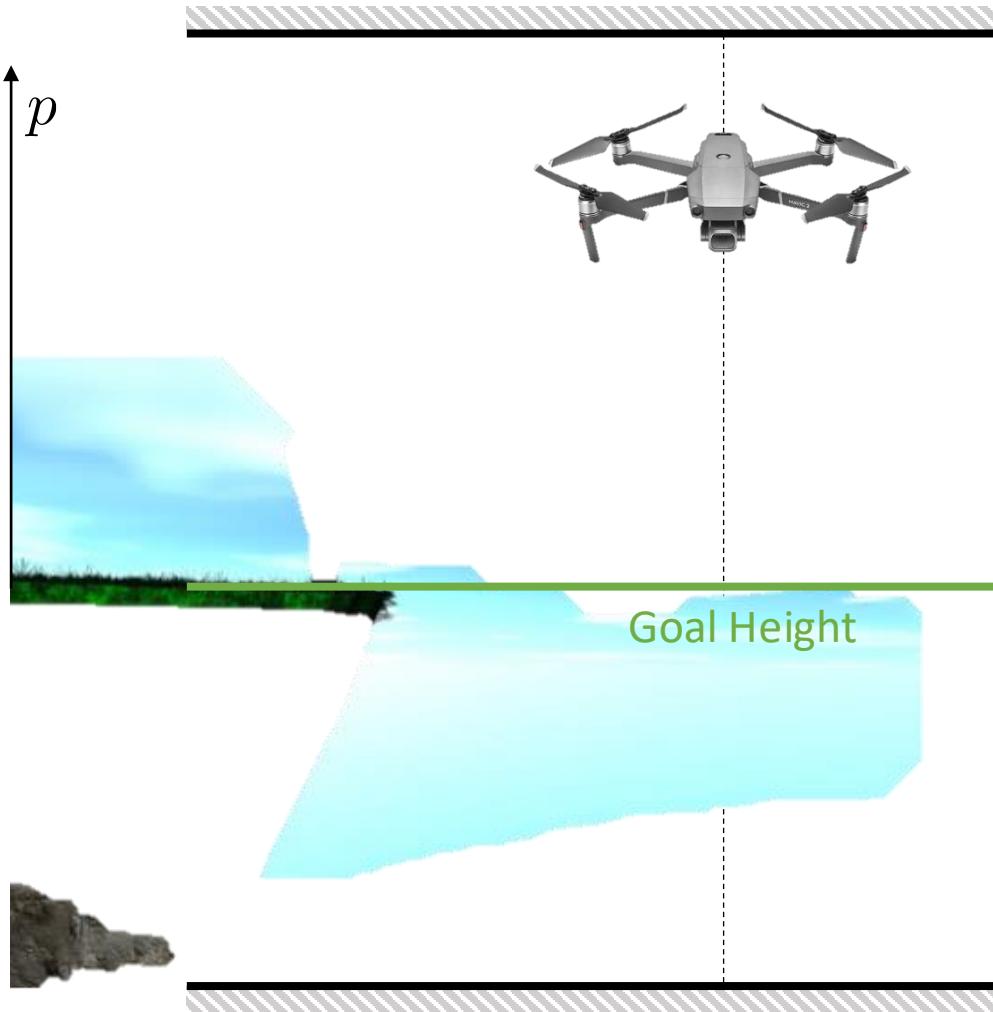
- ▶ State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} \text{position} \\ \text{velocity} \end{bmatrix}$$

- ▶ Input $u = a = \text{acceleration}$
- ▶ Dynamics

$$\begin{bmatrix} p_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_k \\ v_k \end{bmatrix} + \begin{bmatrix} 0 \\ a_k \end{bmatrix}$$

Iterative Tasks – Drone Example



- ▶ State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} \text{position} \\ \text{velocity} \end{bmatrix}$$

- ▶ Input $u = a = \text{acceleration}$

- ▶ Dynamics

$$\begin{bmatrix} p_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_k \\ v_k \end{bmatrix} + \begin{bmatrix} 0 \\ a_k \end{bmatrix}$$

- ▶ Cost $x_k^\top Q x_k + u_k^\top R u_k$

Iterative Tasks – Drone Example



- ▶ State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} \text{position} \\ \text{velocity} \end{bmatrix}$$

- ▶ Input $u = a = \text{acceleration}$

- ▶ Dynamics

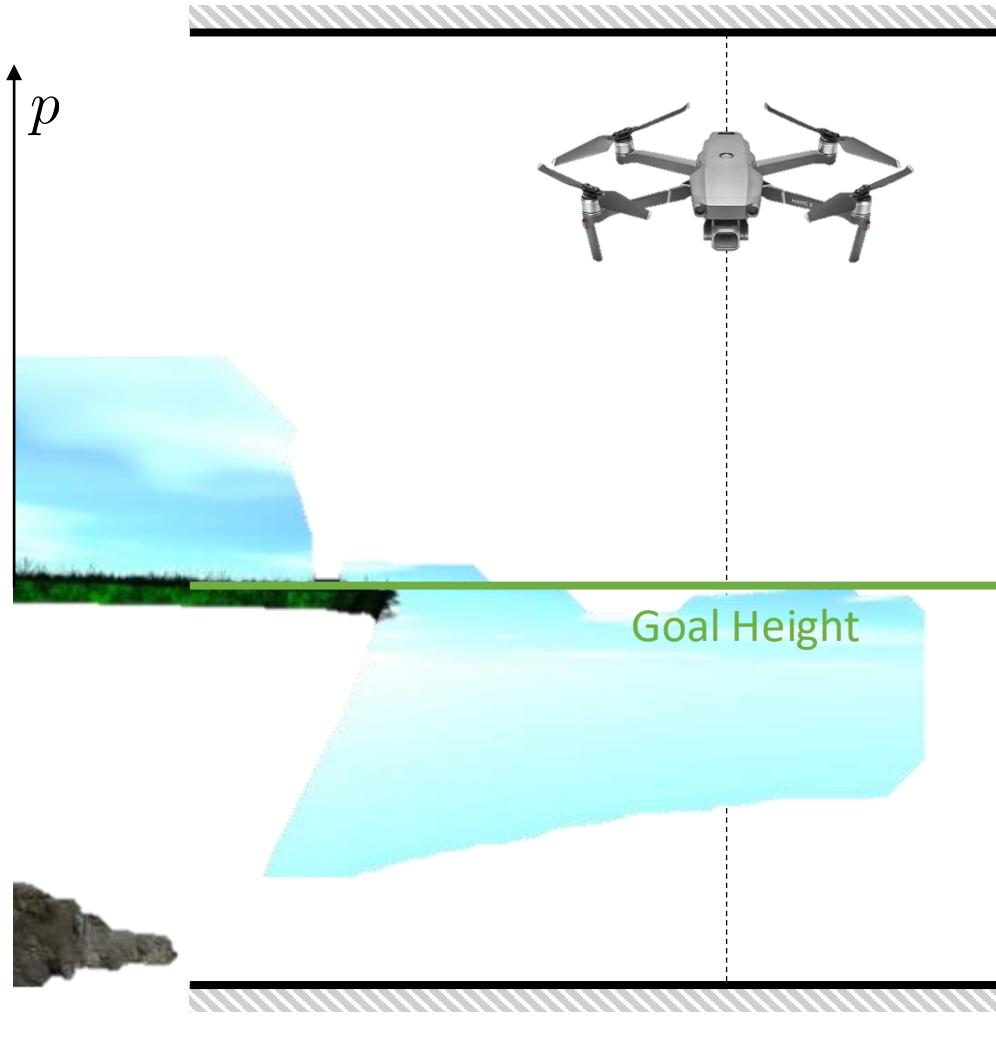
$$\begin{bmatrix} p_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_k \\ v_k \end{bmatrix} + \begin{bmatrix} 0 \\ a_k \end{bmatrix}$$

- ▶ Cost $x_k^\top Q x_k + u_k^\top R u_k$

- ▶ Constraints

$$\begin{bmatrix} -5 \\ -5 \\ -0.5 \end{bmatrix} \leq \begin{bmatrix} p_k \\ v_k \\ a_k \end{bmatrix} \leq \begin{bmatrix} 5 \\ 5 \\ 0.5 \end{bmatrix}$$

Iterative Tasks – Drone Example



- ▶ State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} \text{position} \\ \text{velocity} \end{bmatrix}$$

- ▶ Input $u = a = \text{acceleration}$

- ▶ Dynamics

$$\begin{bmatrix} p_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_k \\ v_k \end{bmatrix} + \begin{bmatrix} 0 \\ a_k \end{bmatrix}$$

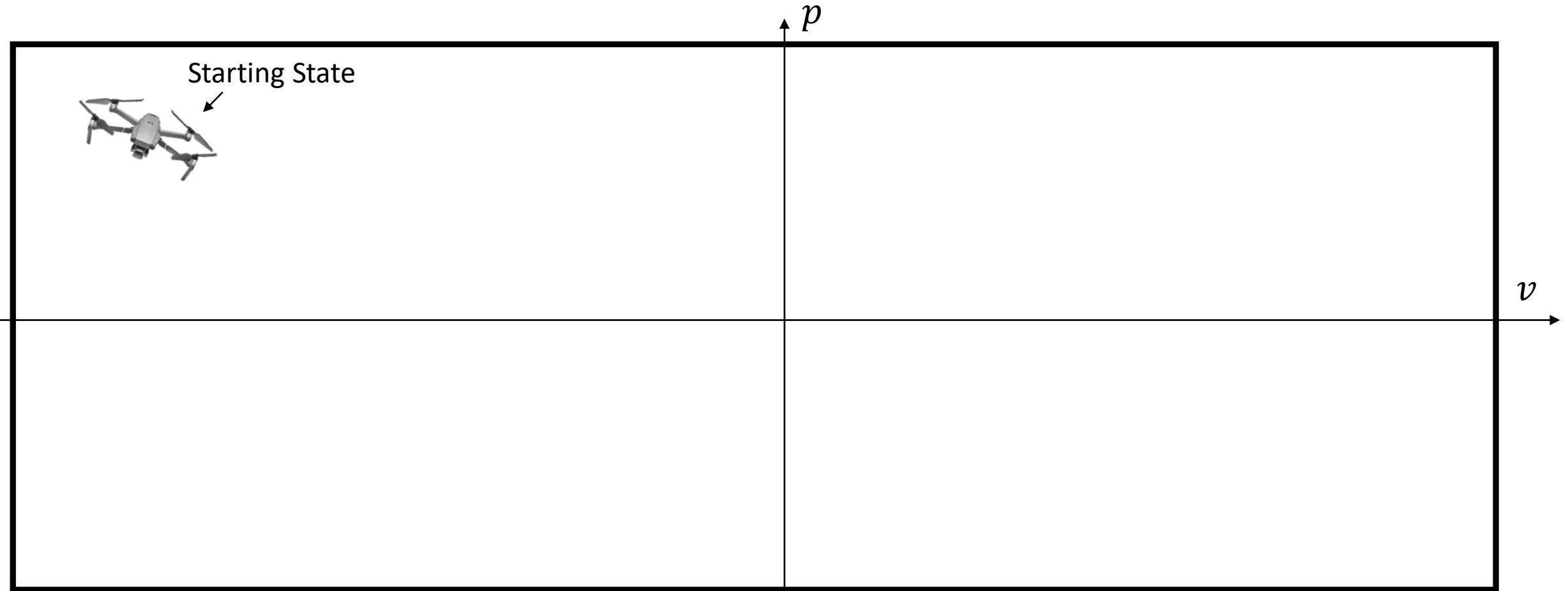
- ▶ Cost $x_k^\top Q x_k + u_k^\top R u_k$

- ▶ Constraints

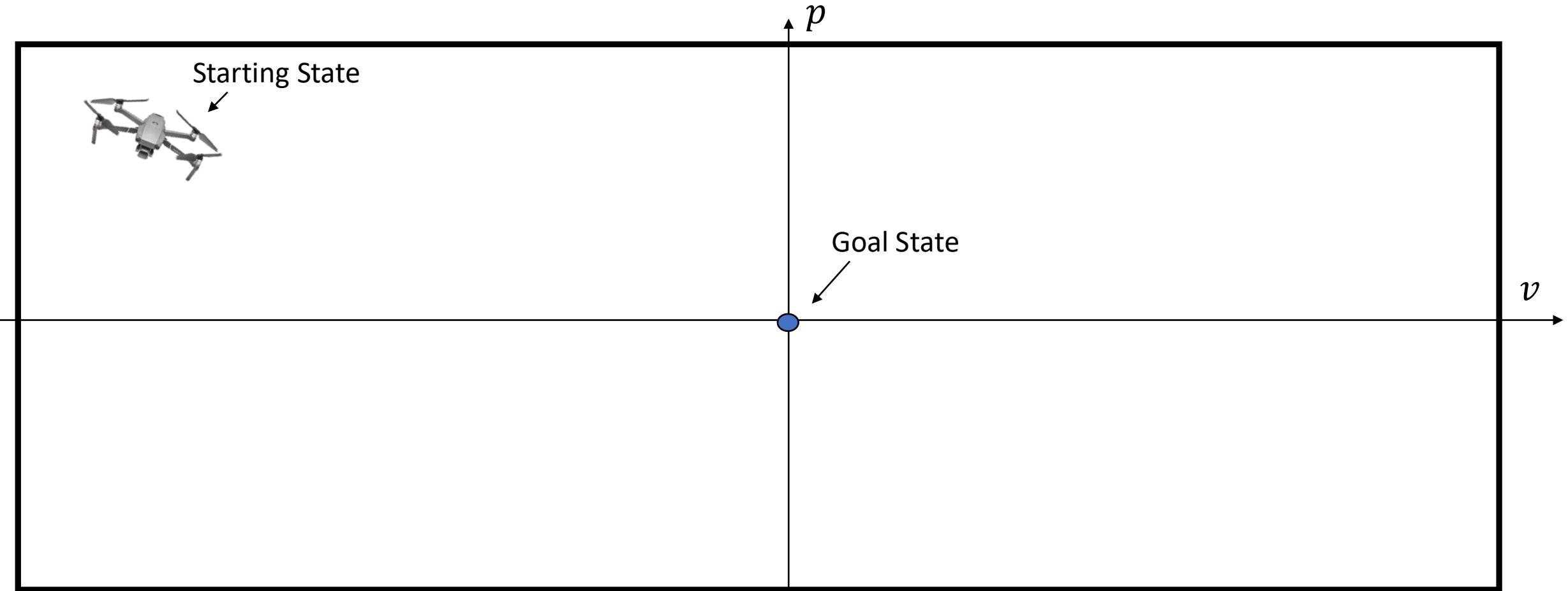
$$\begin{bmatrix} -5 \\ -5 \\ -0.5 \end{bmatrix} \leq \begin{bmatrix} p_k \\ v_k \\ a_k \end{bmatrix} \leq \begin{bmatrix} 5 \\ 5 \\ 0.5 \end{bmatrix}$$

Limited actuation!

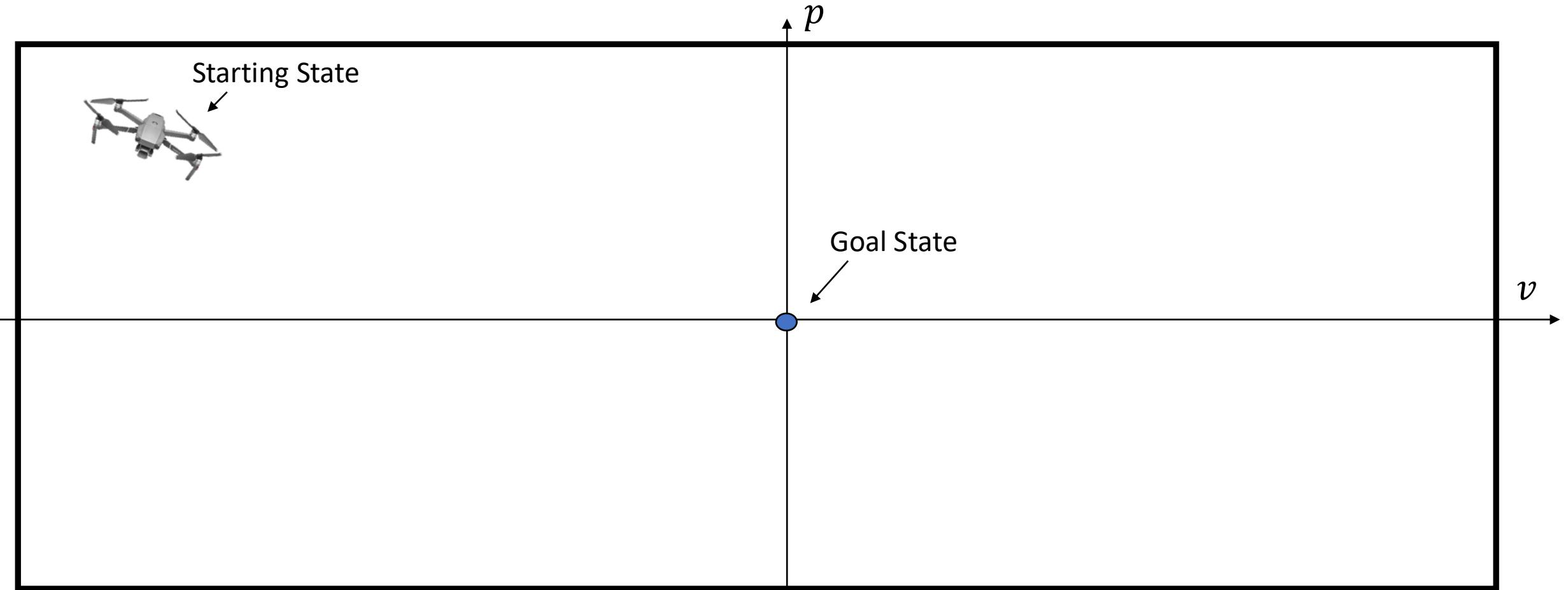
Iterative Tasks – Drone Example



Iterative Tasks – Drone Example

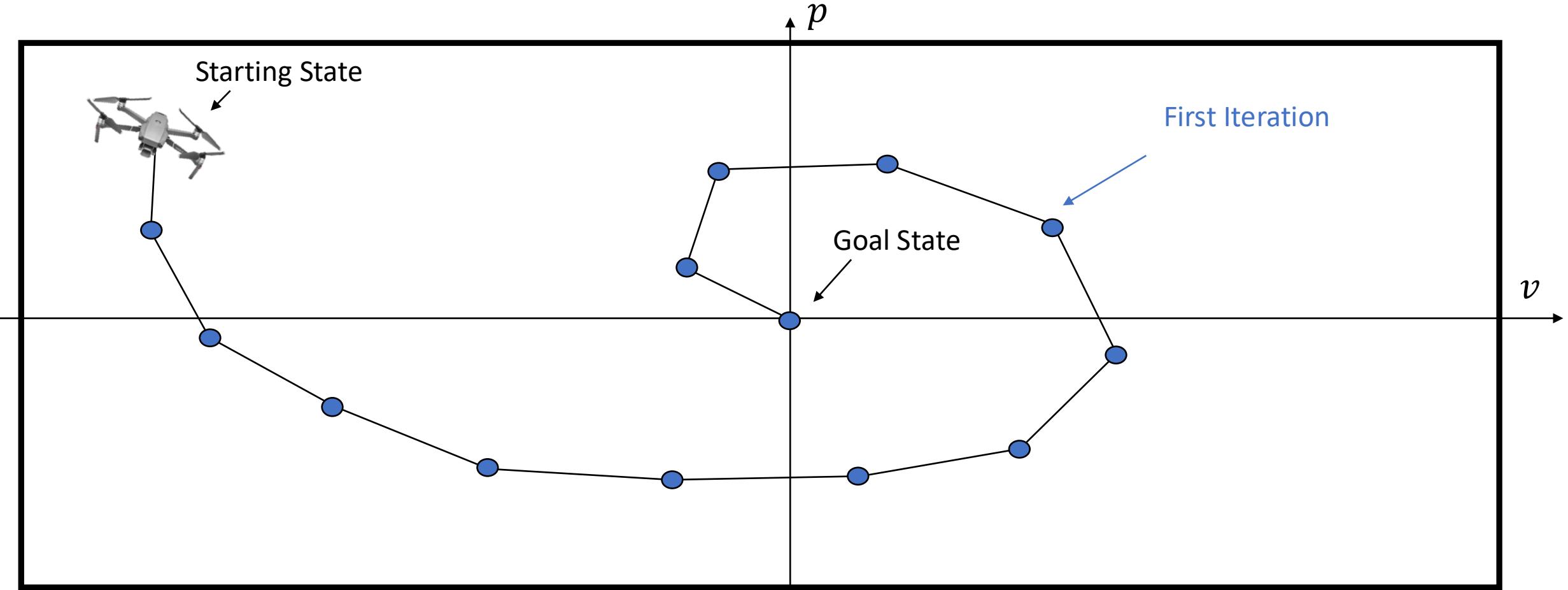


Iterative Tasks – Drone Example



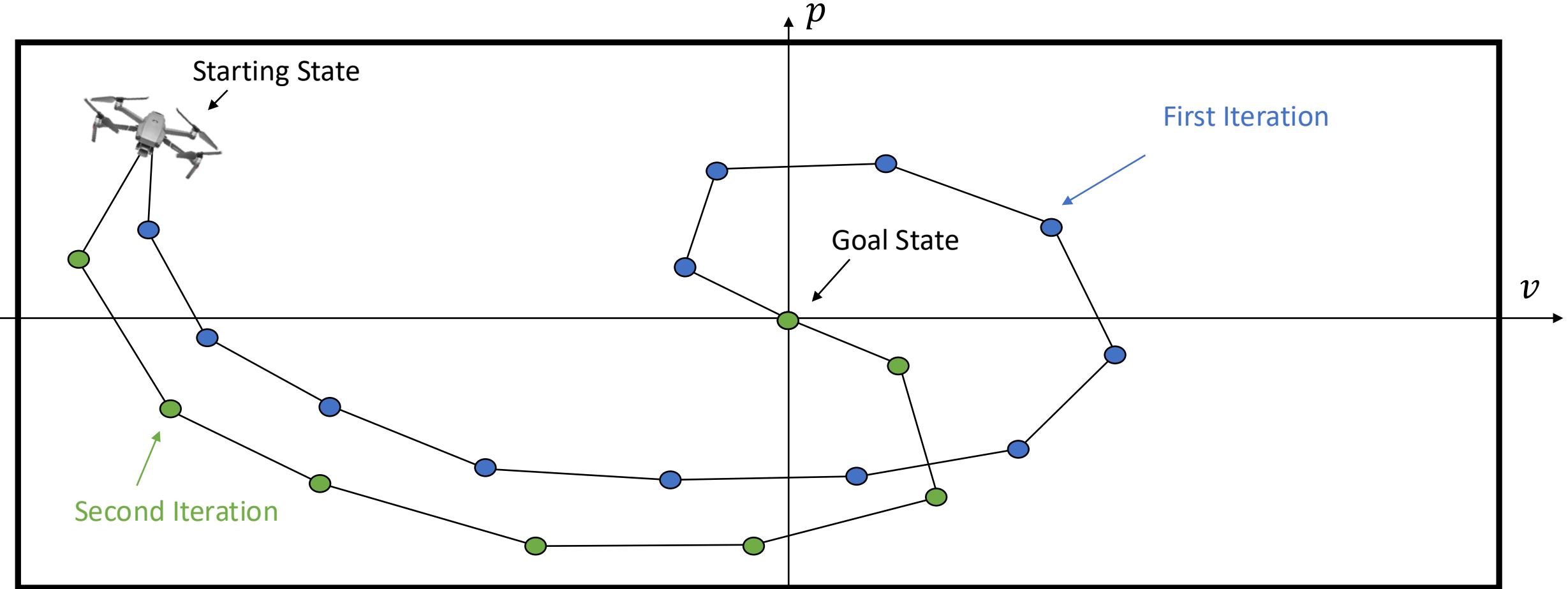
- ▶ Iteration = one execution of the task

Iterative Tasks – Drone Example



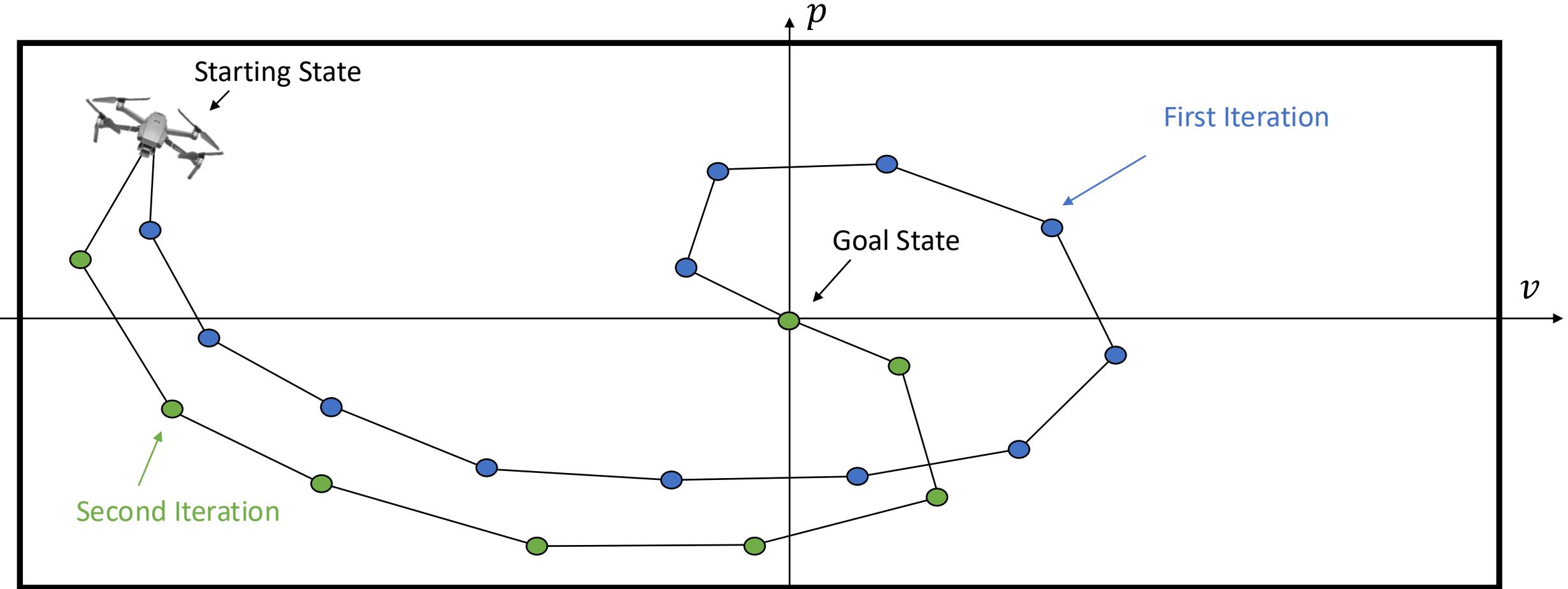
- ▶ Iteration = one execution of the task

Iterative Tasks – Drone Example



- ▶ Iteration = one execution of the task

Iterative Tasks – Drone Example



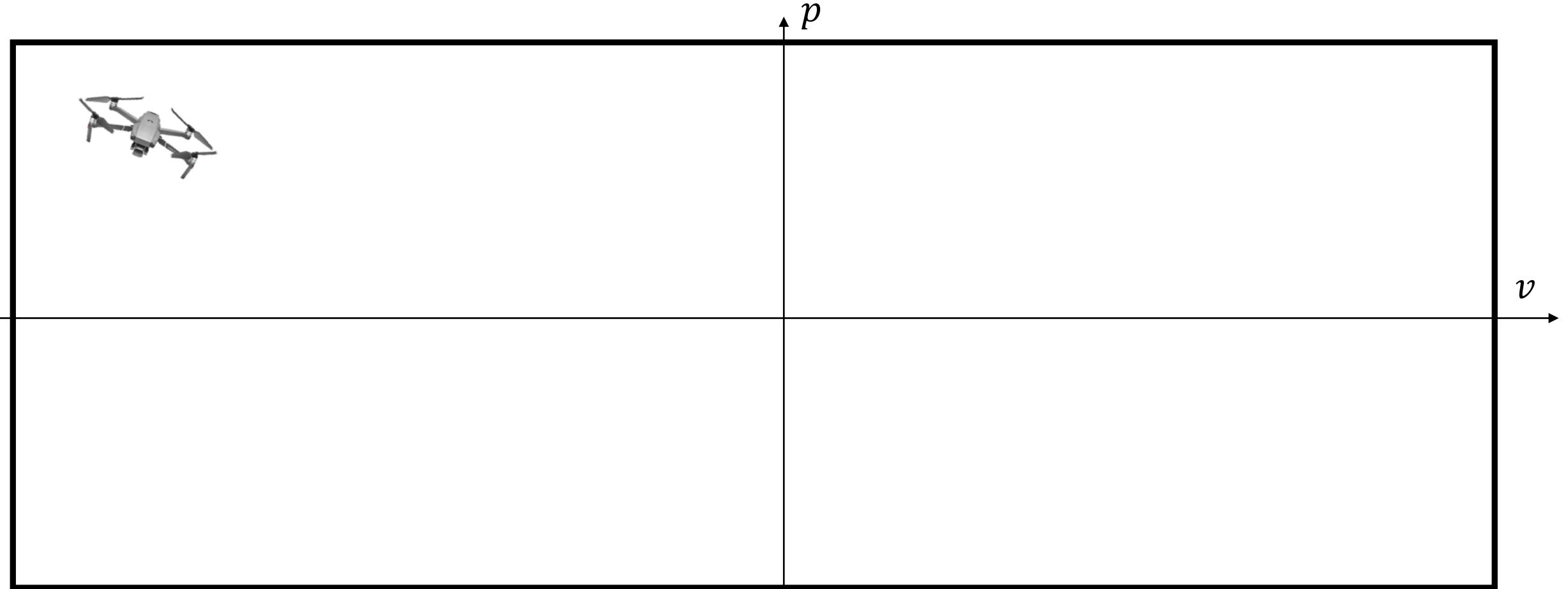
- ▶ Iteration = one execution of the task
- ▶ Objective: Drive the drone optimally from the starting state to the goal state

Learning Model Predictive Control (LMPC)

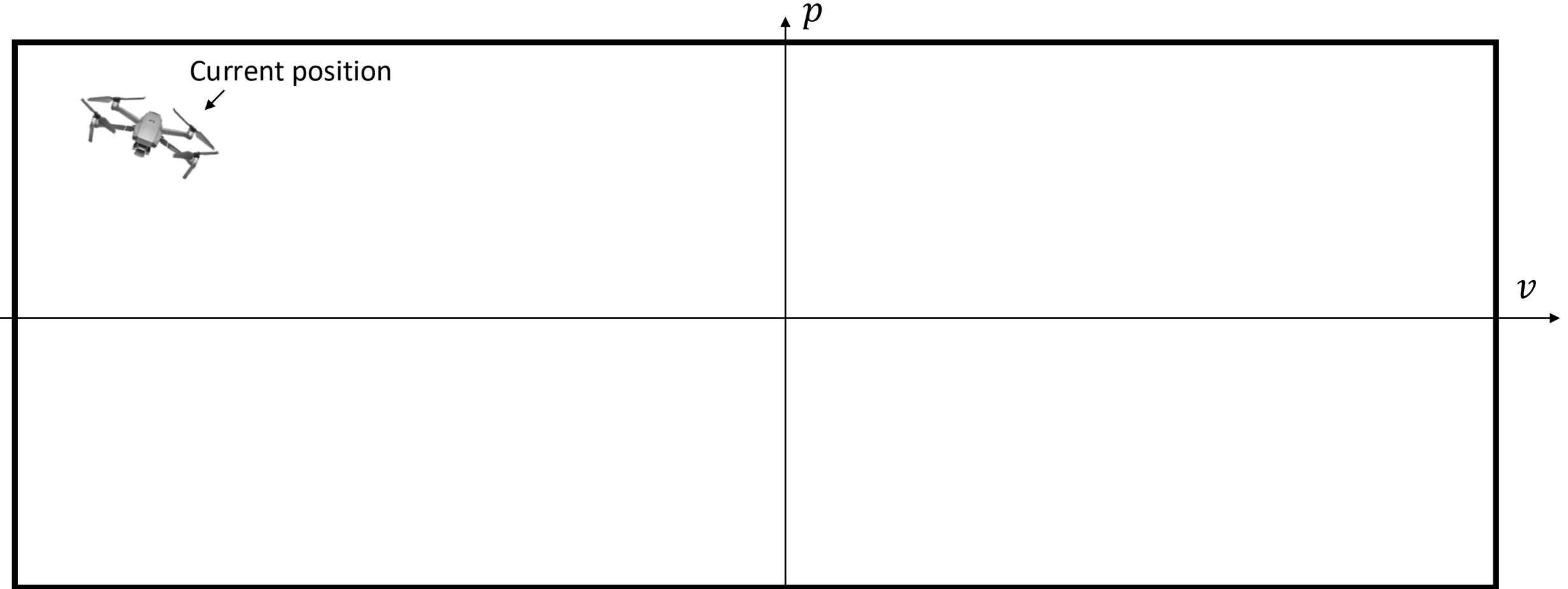
Exploit historical data

Learning Model Predictive Control (LMPC) – Key Idea

Learning Model Predictive Control (LMPC) – Key Idea



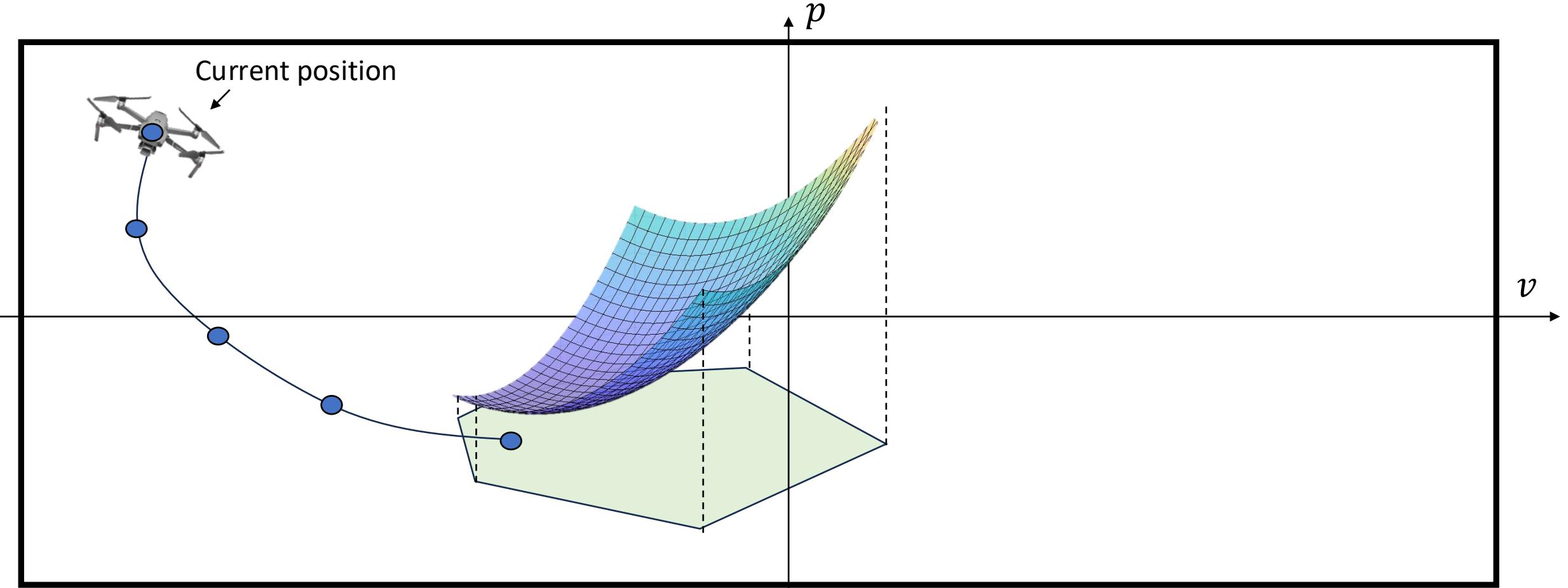
Learning Model Predictive Control (LMPC) – Key Idea



Algorithm steps:

- ▶ Get current state

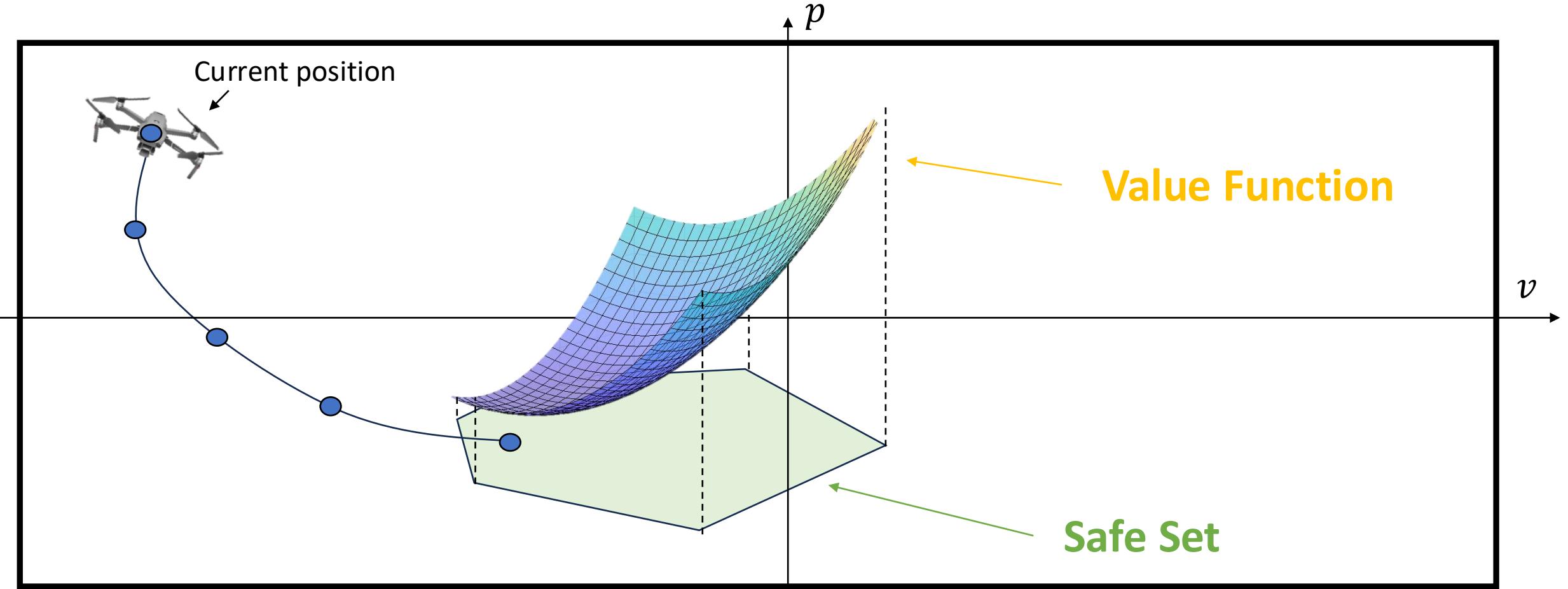
Learning Model Predictive Control (LMPC) – Key Idea



Algorithm steps:

- ▶ Get current state
- ▶ Plan a trajectory

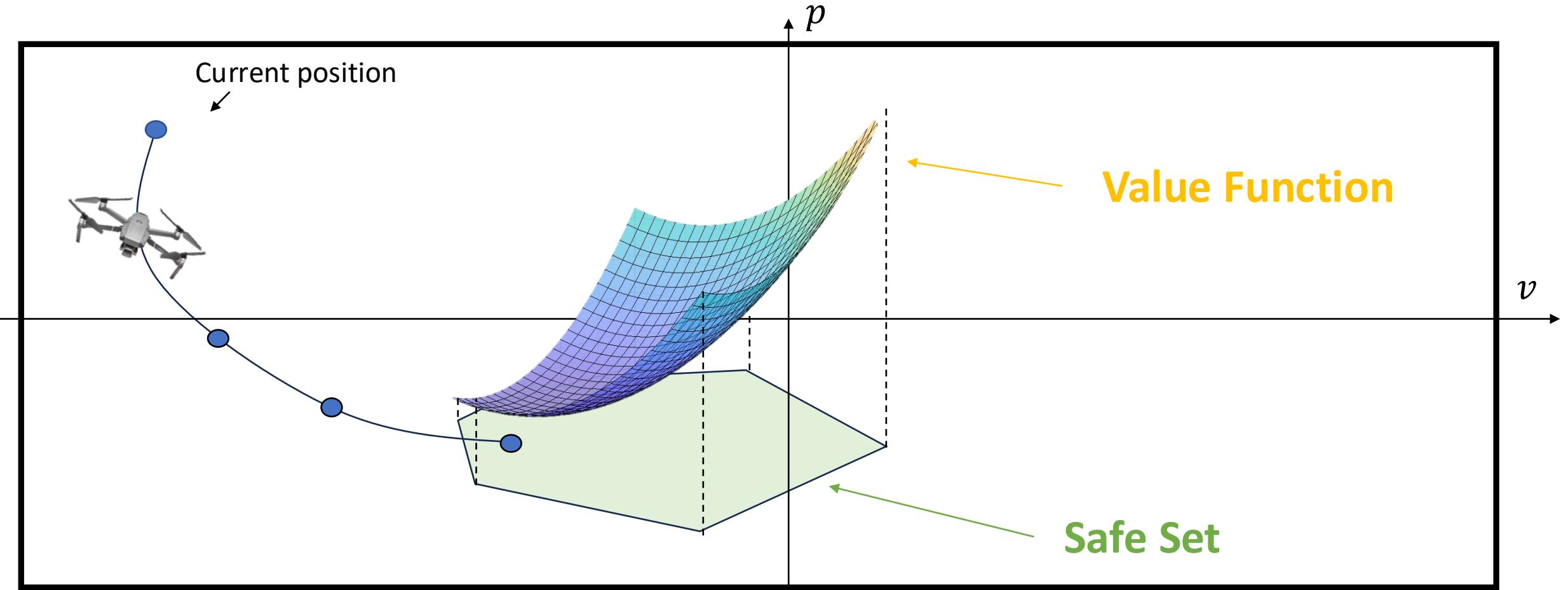
Learning Model Predictive Control (LMPC) – Key Idea



Algorithm steps:

- ▶ Get current state
- ▶ Plan a trajectory

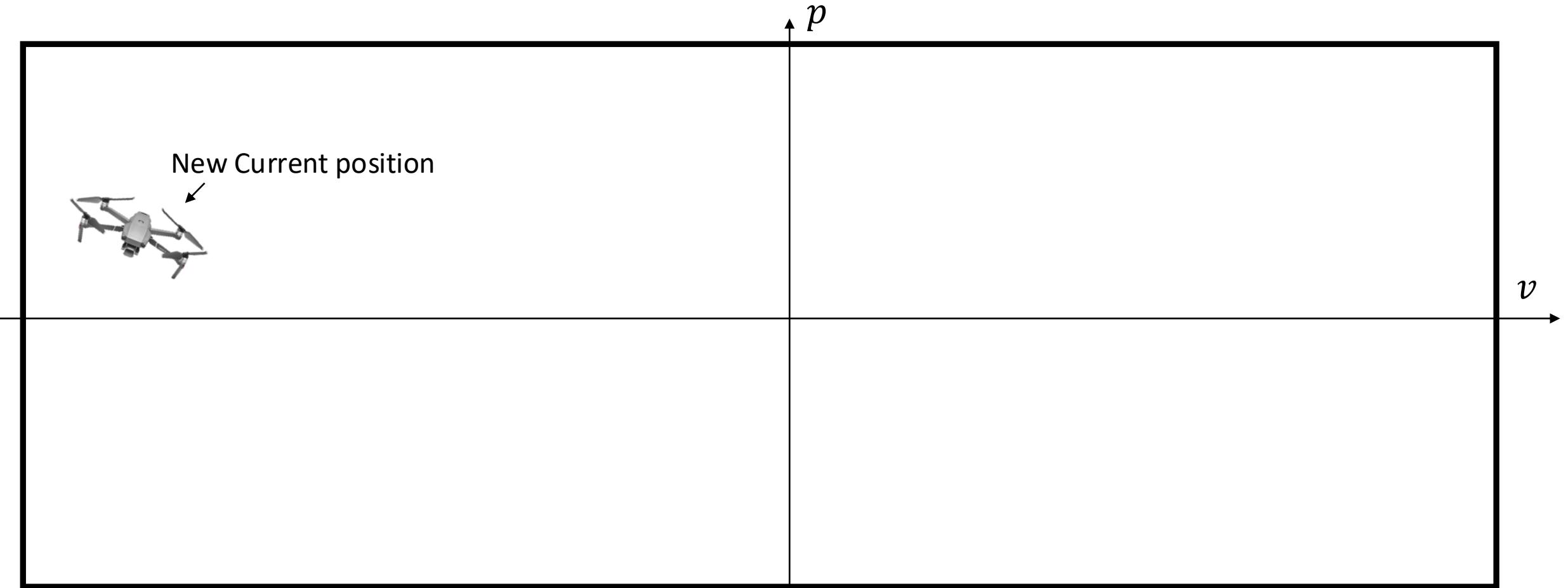
Learning Model Predictive Control (LMPC) – Key Idea



Algorithm steps:

- ▶ Get current state
- ▶ Plan a trajectory
- ▶ Execute the action

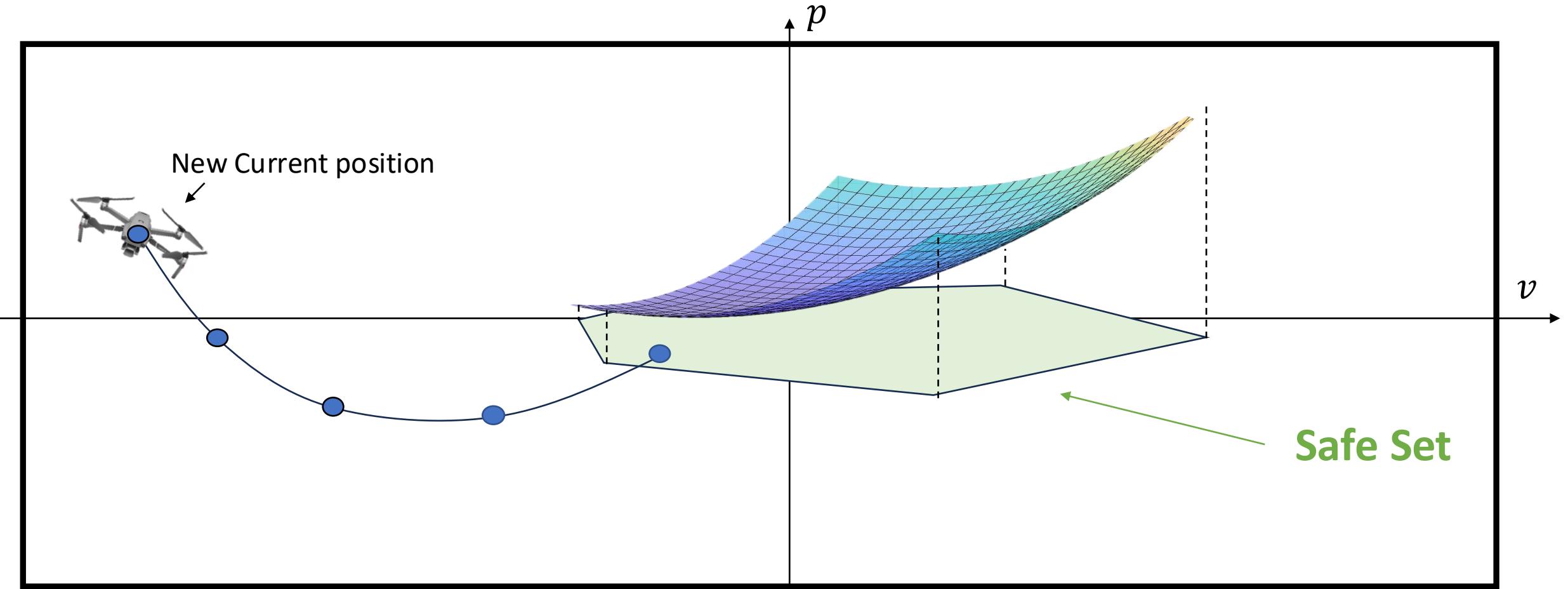
Learning Model Predictive Control (LMPC) – Key Idea



Algorithm steps:

- ▶ Get current state
- ▶ Plan a trajectory
- ▶ Execute the action

Learning Model Predictive Control (LMPC) – Key Idea



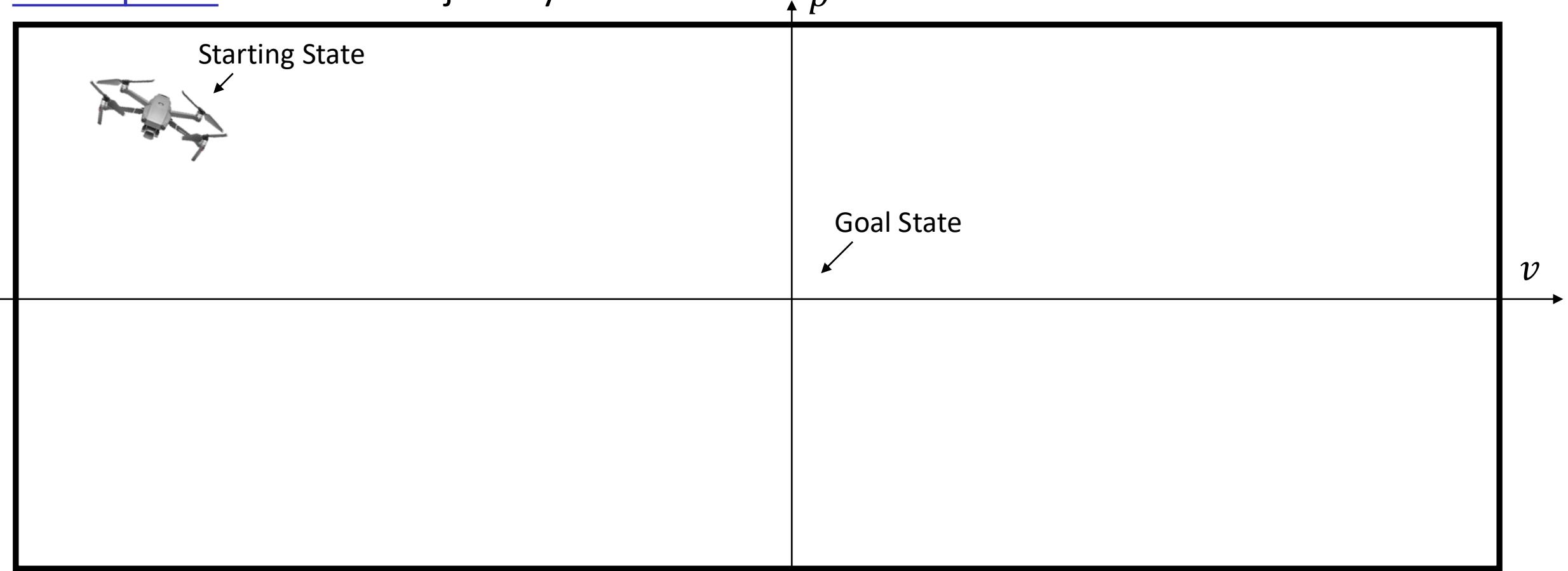
Algorithm steps:

- ▶ Get current state
- ▶ Plan a trajectory
- ▶ Execute the action

Learning the Safe Set

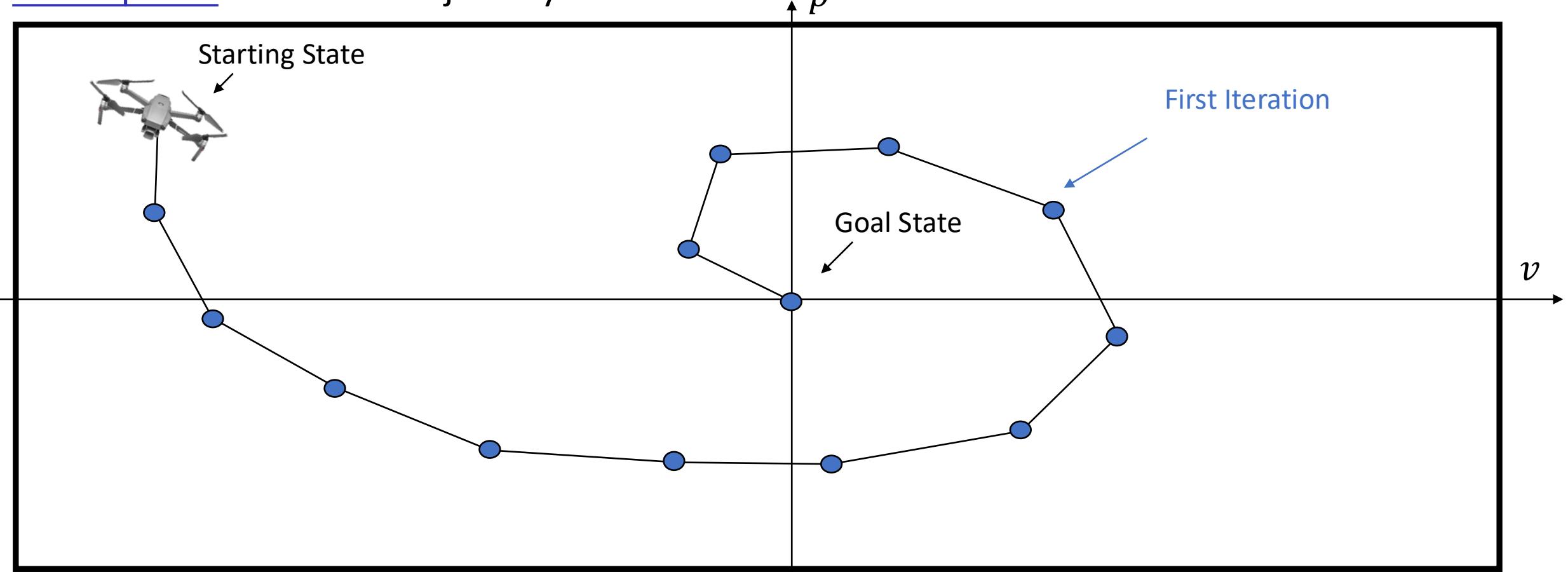
Iteration 1

Assumption: A feasible trajectory is known



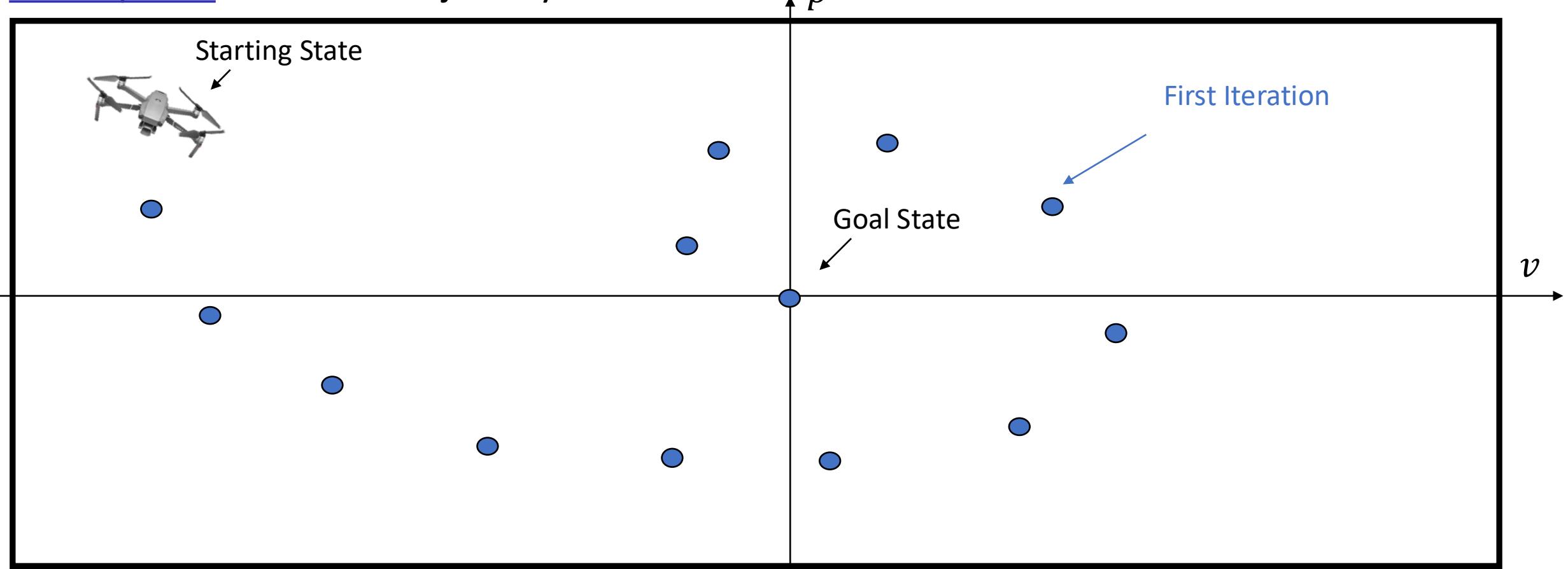
Iteration 1

Assumption: A feasible trajectory is known



Iteration 1

Assumption: A feasible trajectory is known

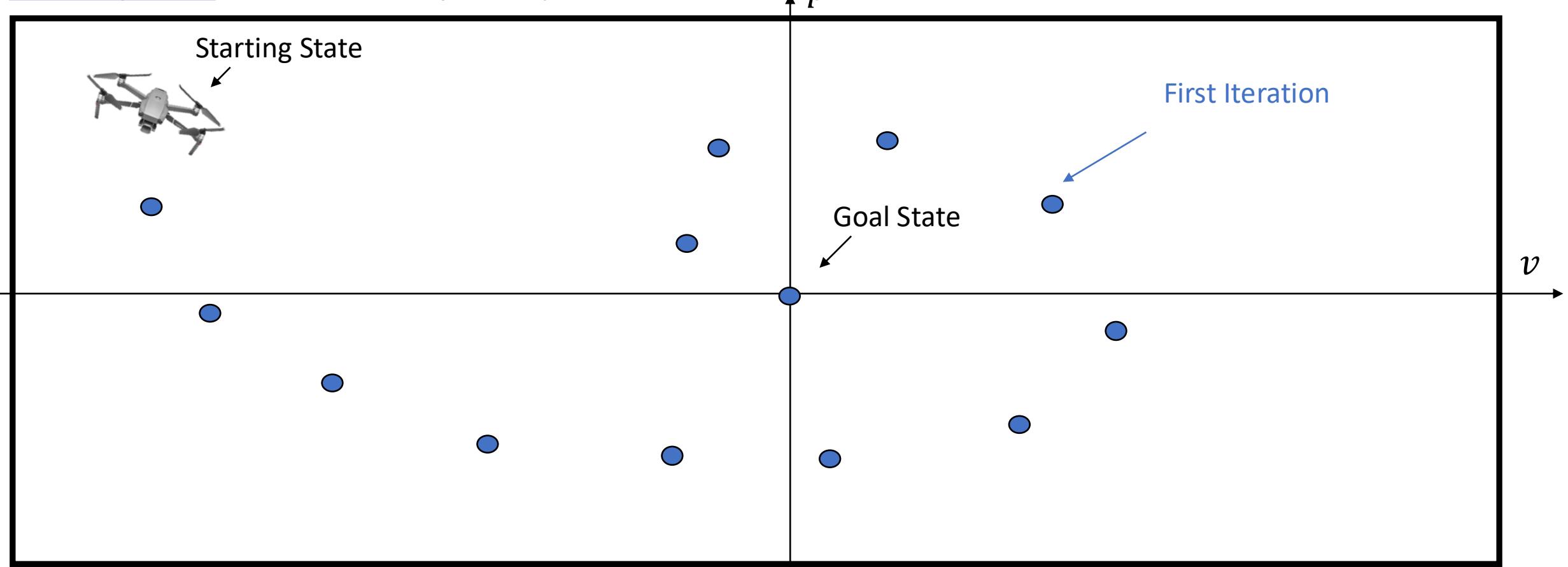


Definition: Sampled Safe Set

$$\mathcal{SS}^1 = \{\text{Stored Data}\}$$

Iteration 1

Assumption: A feasible trajectory is known



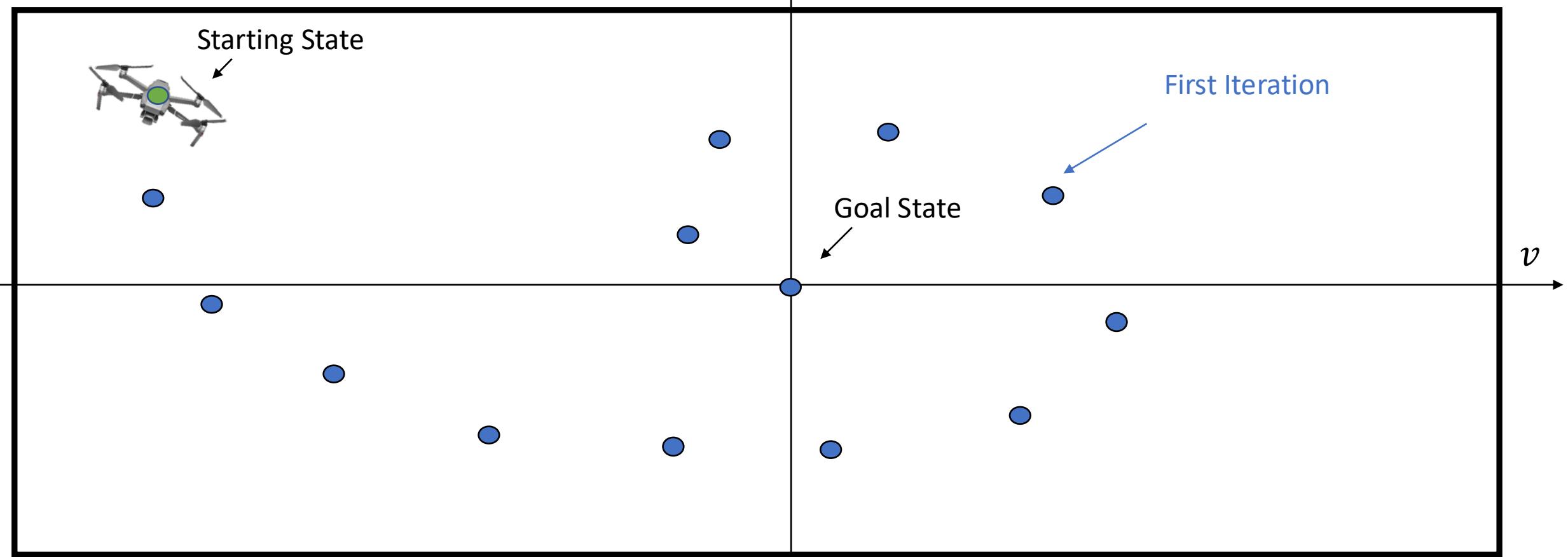
Definition: Sampled Safe Set

$$\mathcal{SS}^1 = \{\text{Stored Data}\}$$

Set of states from which
the task can be completed!

Iteration 2, Step 0

Use \mathcal{SS}^1 as terminal

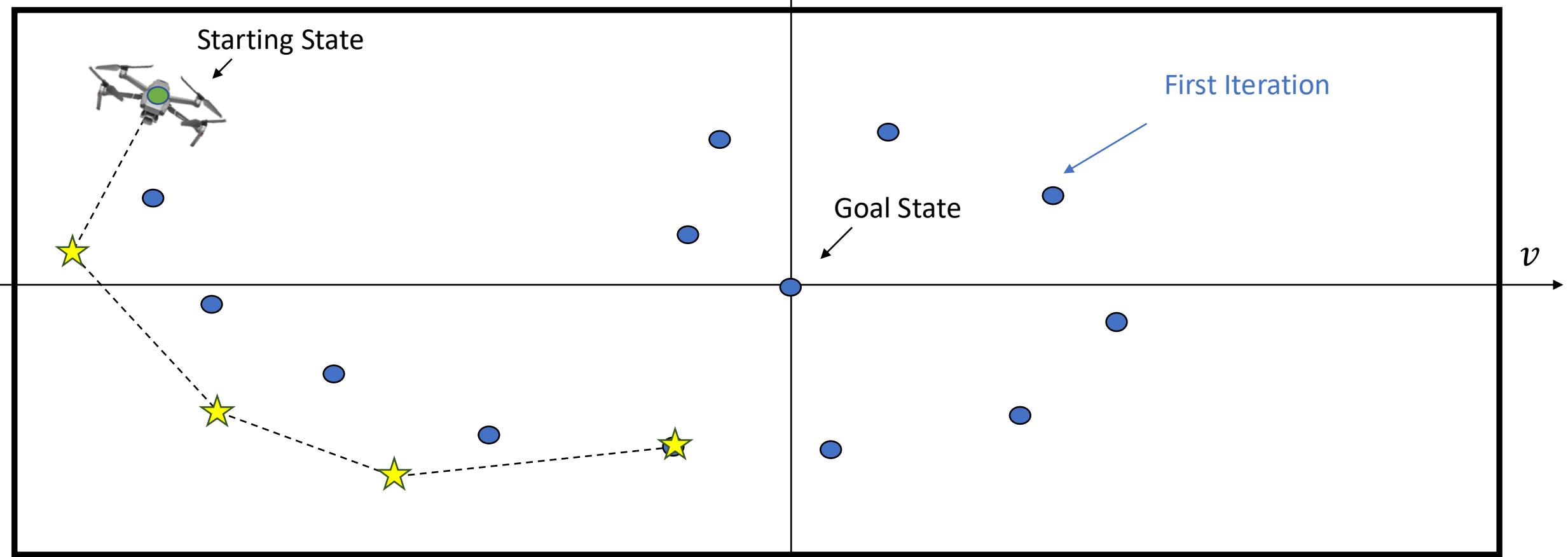


● Sampled Safe Set at iteration 0

● Drone state at iteration 1

Iteration 2, Step 0

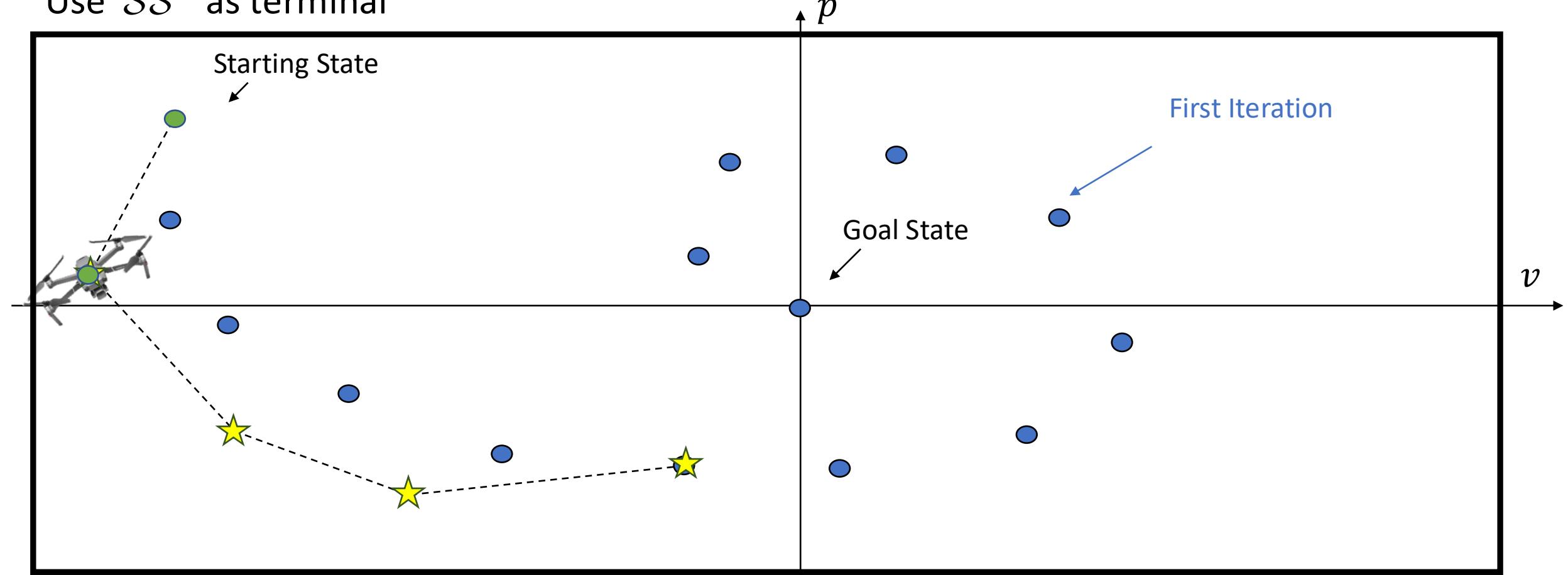
Use \mathcal{SS}^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 1

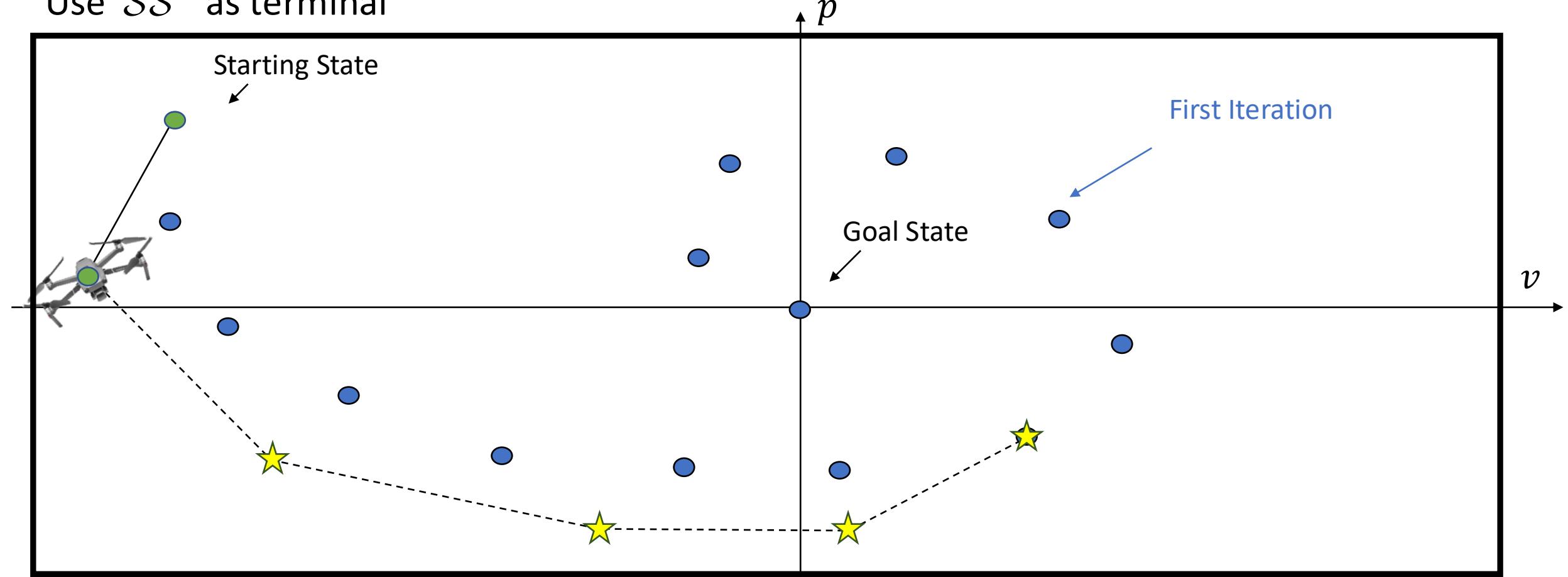
Use SS^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 1

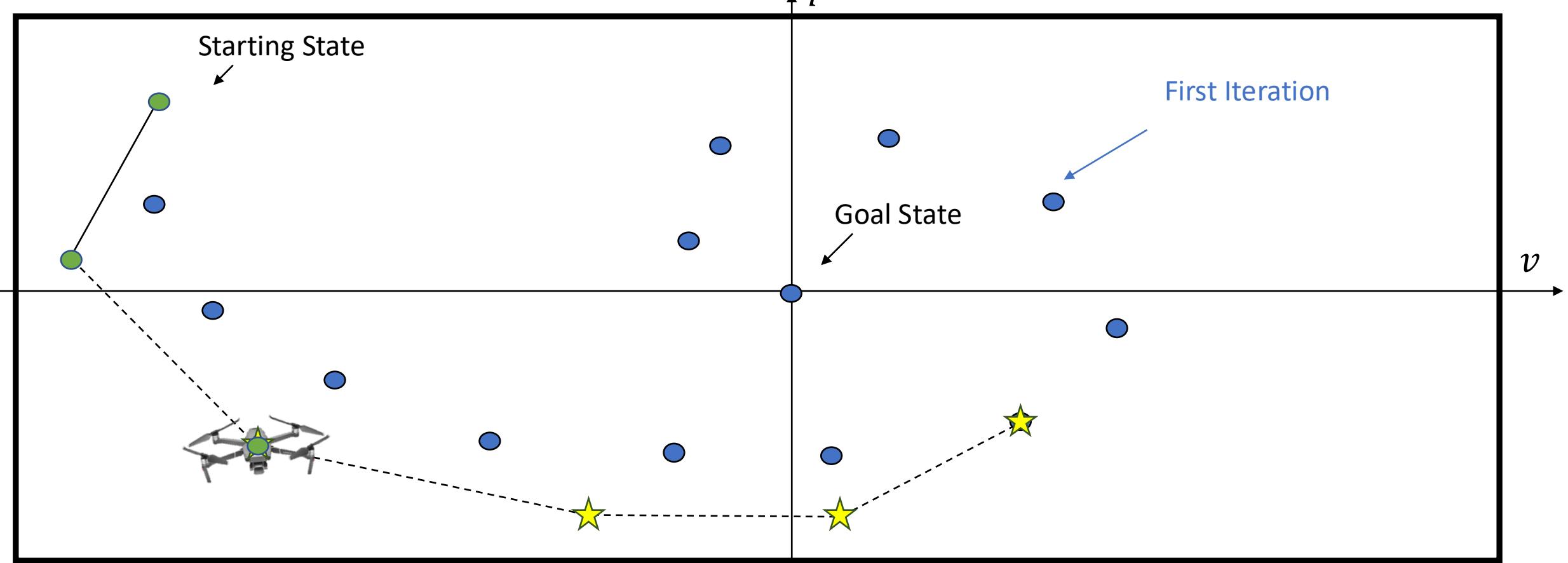
Use \mathcal{SS}^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 2

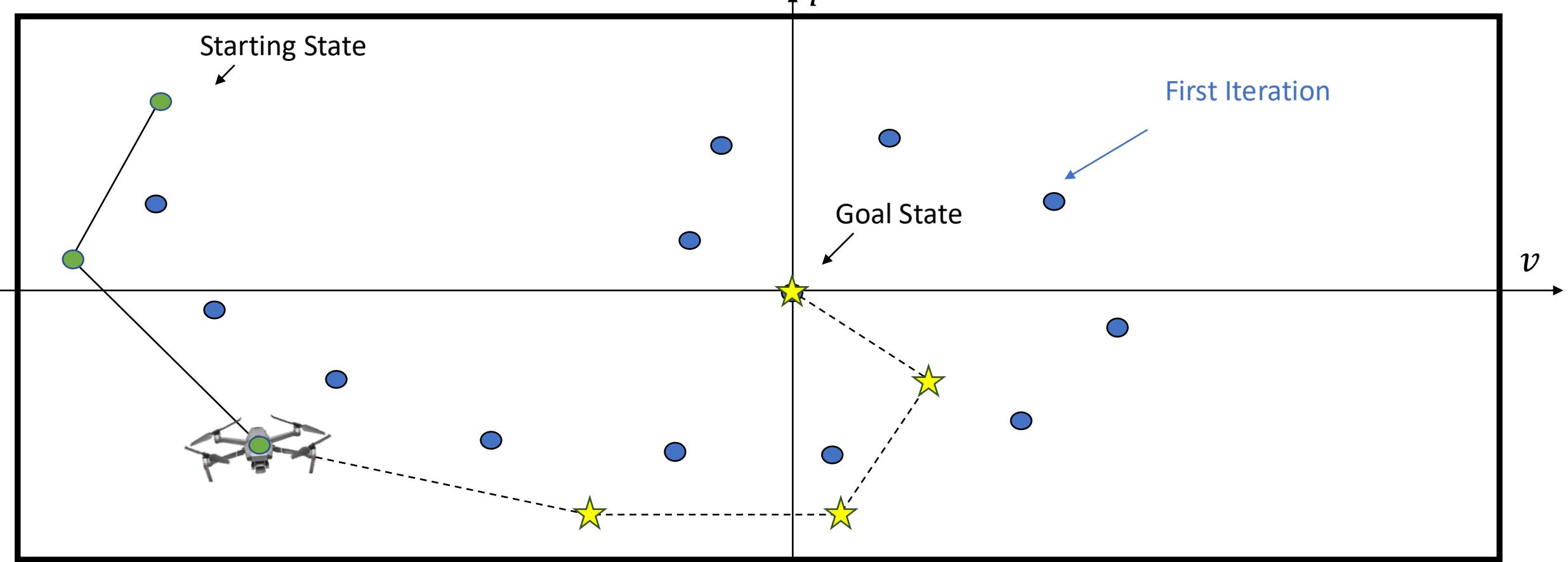
Use \mathcal{SS}^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 2

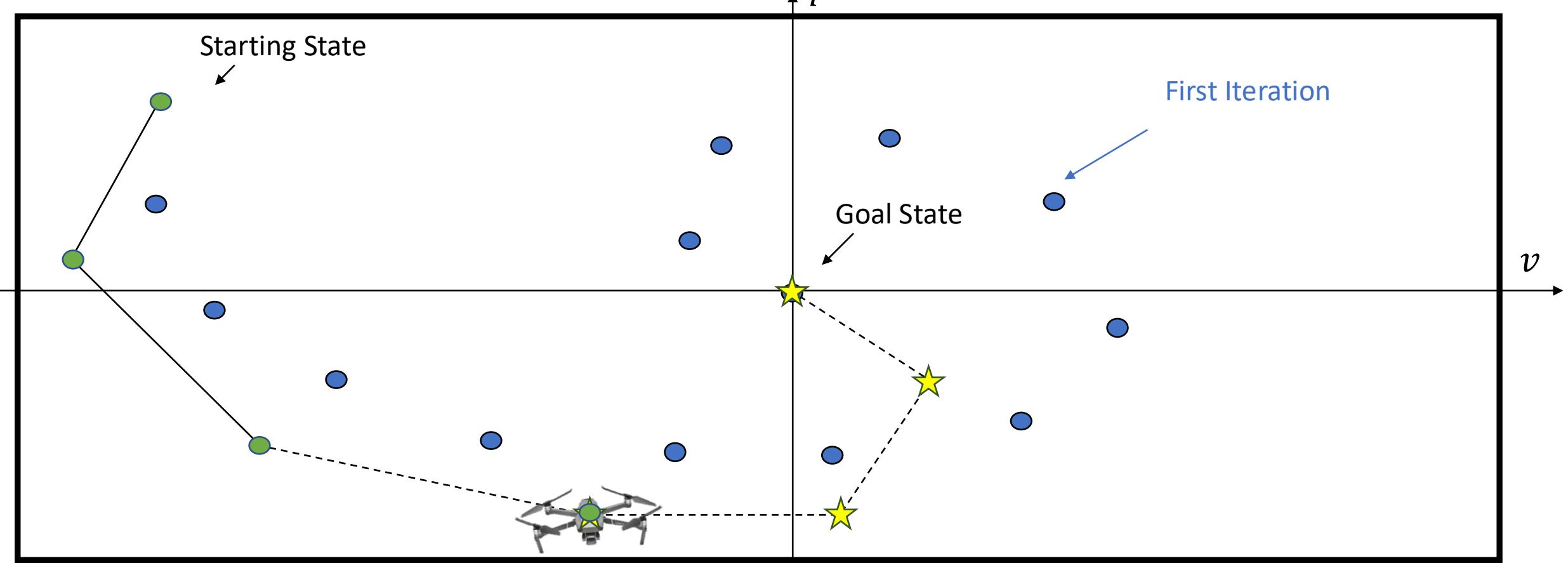
Use \mathcal{SS}^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 3

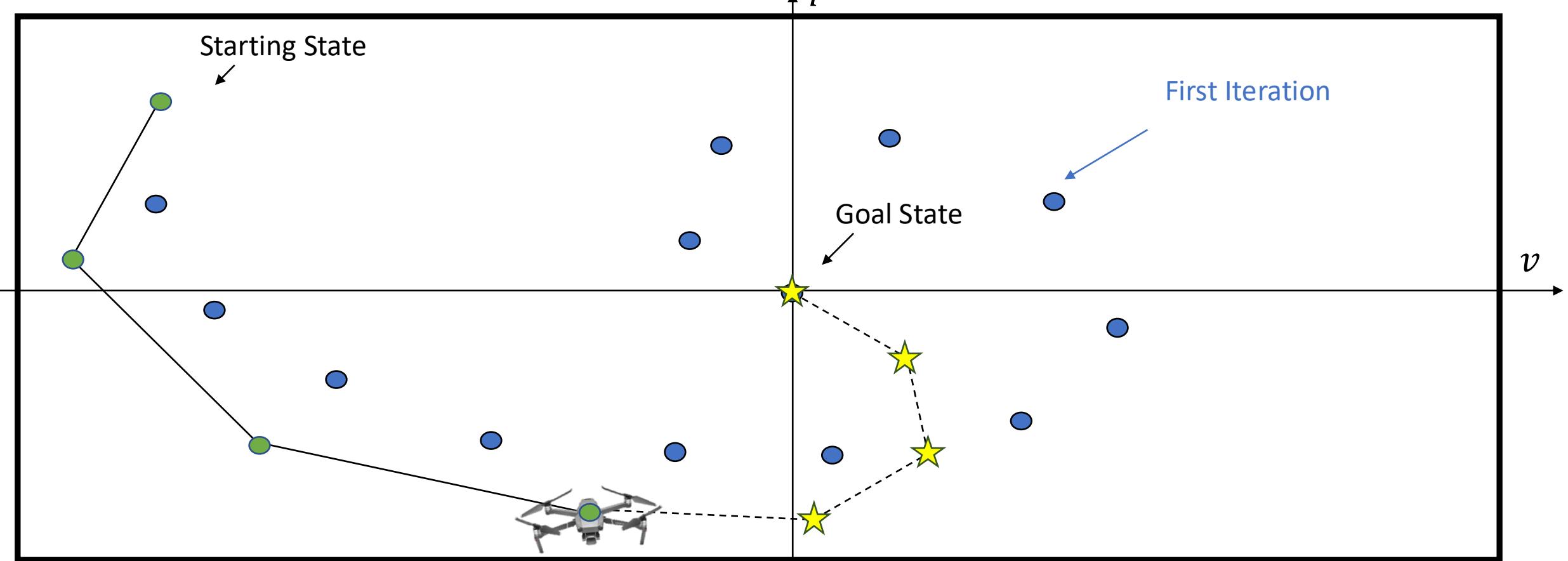
Use SS^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 3

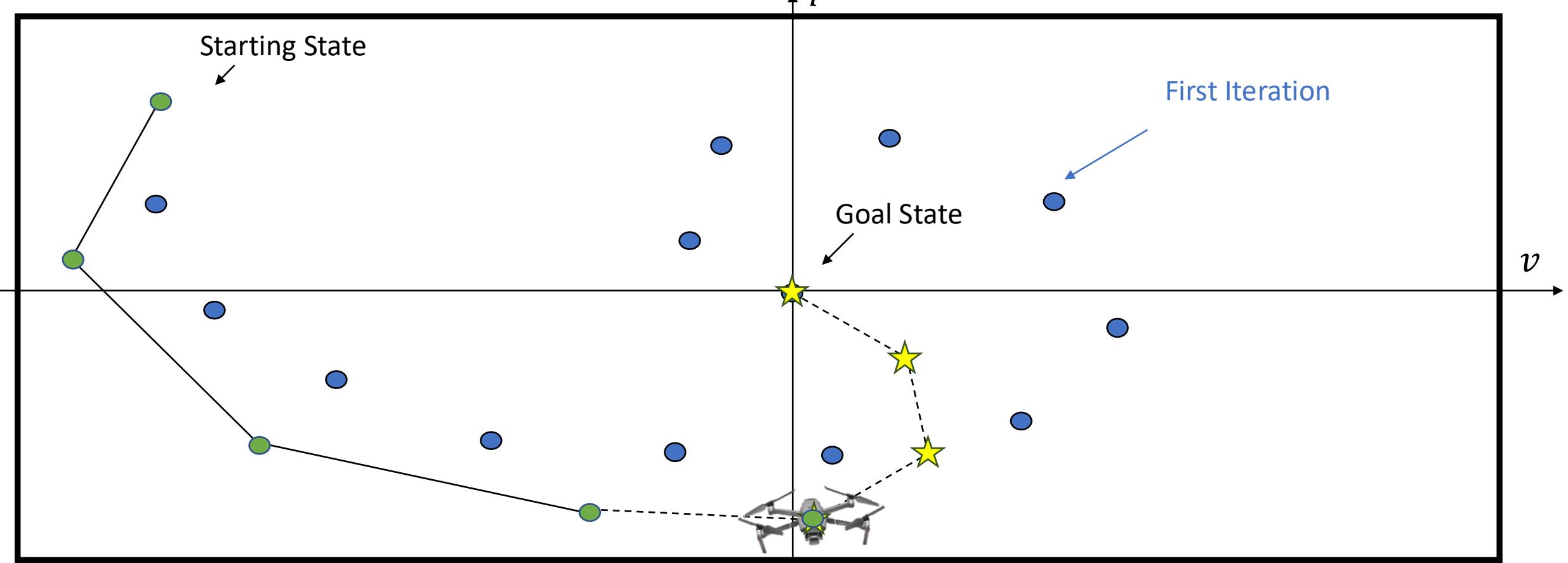
Use \mathcal{SS}^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 4

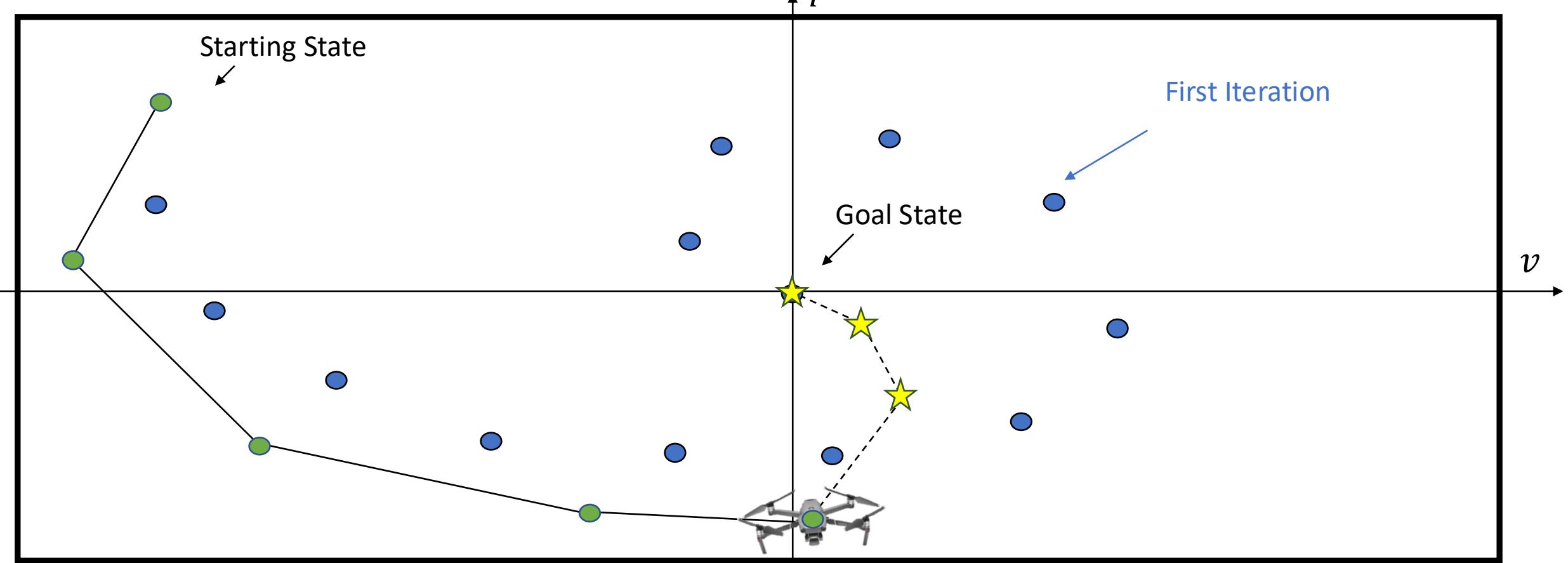
Use \mathcal{SS}^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 4

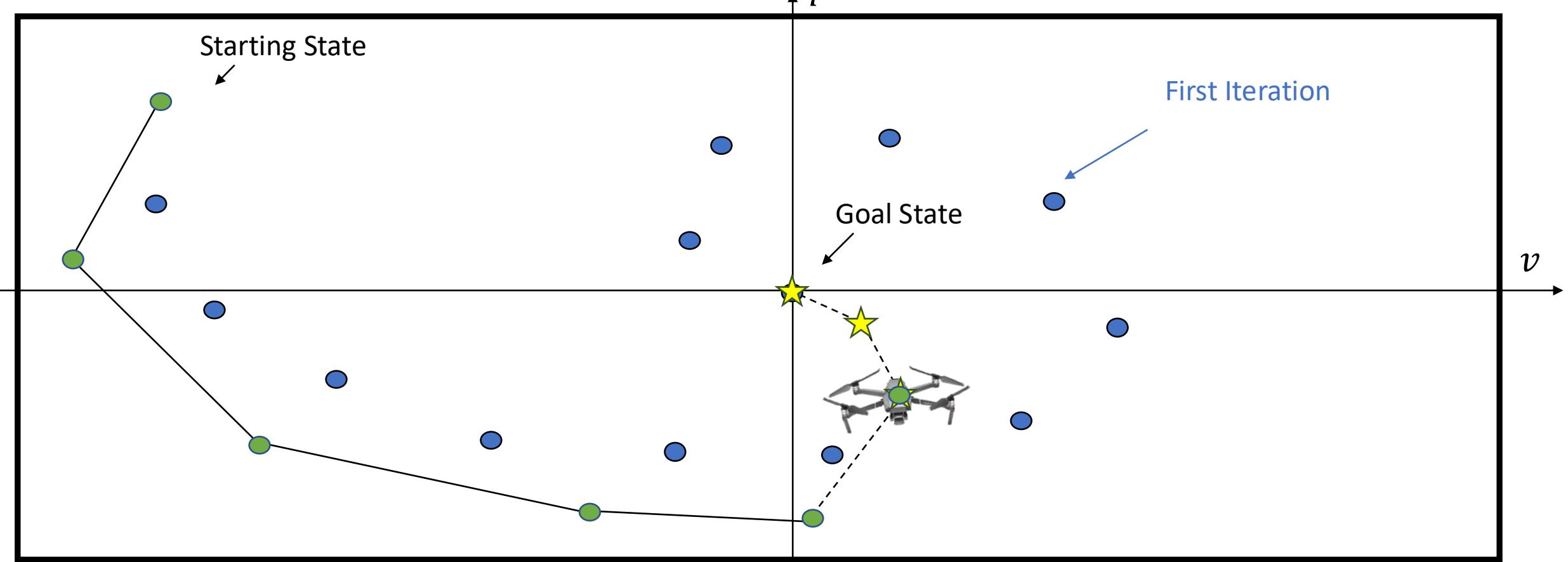
Use \mathcal{SS}^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 5

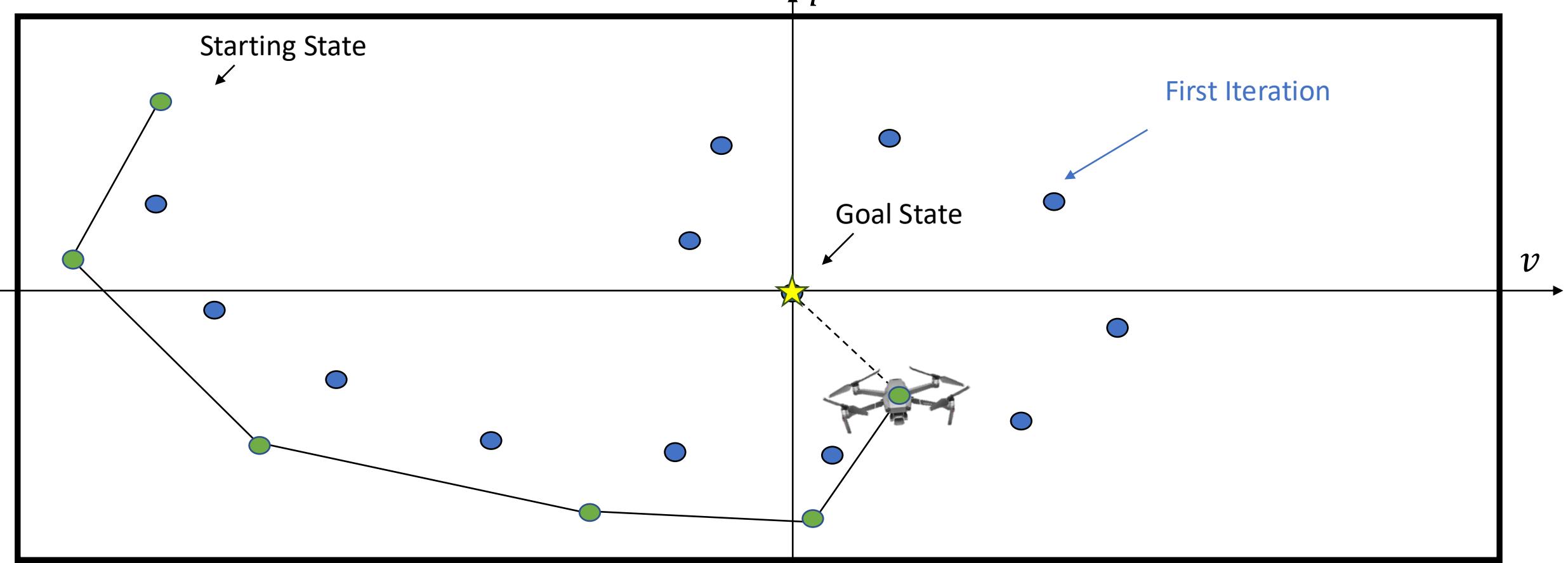
Use SS^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 5

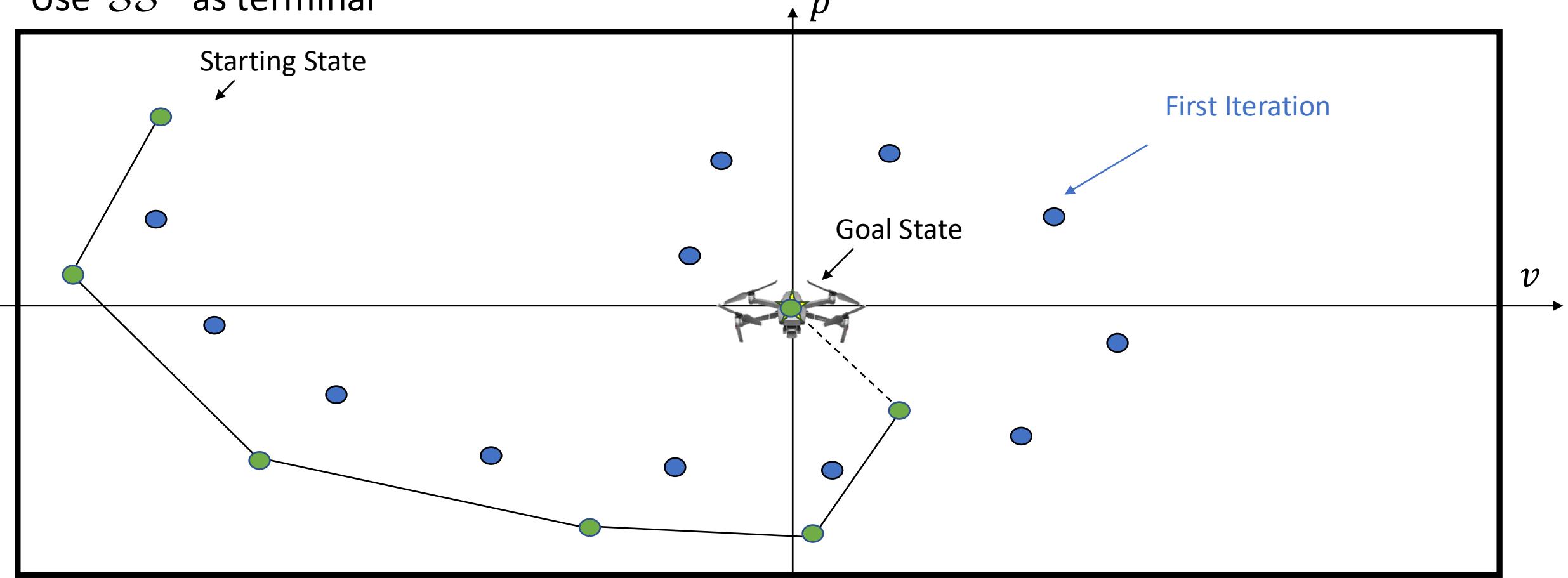
Use \mathcal{SS}^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

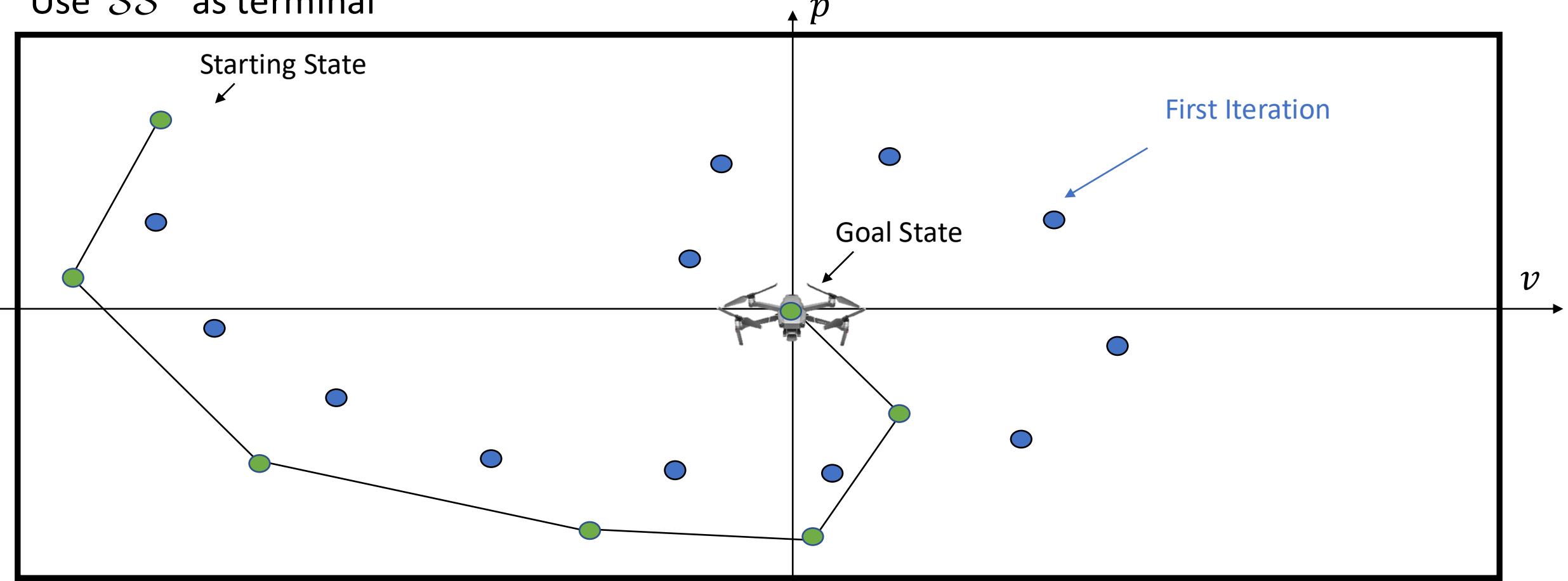
Iteration 2, Step 5

Use \mathcal{SS}^1 as terminal



Iteration 2, Step 5

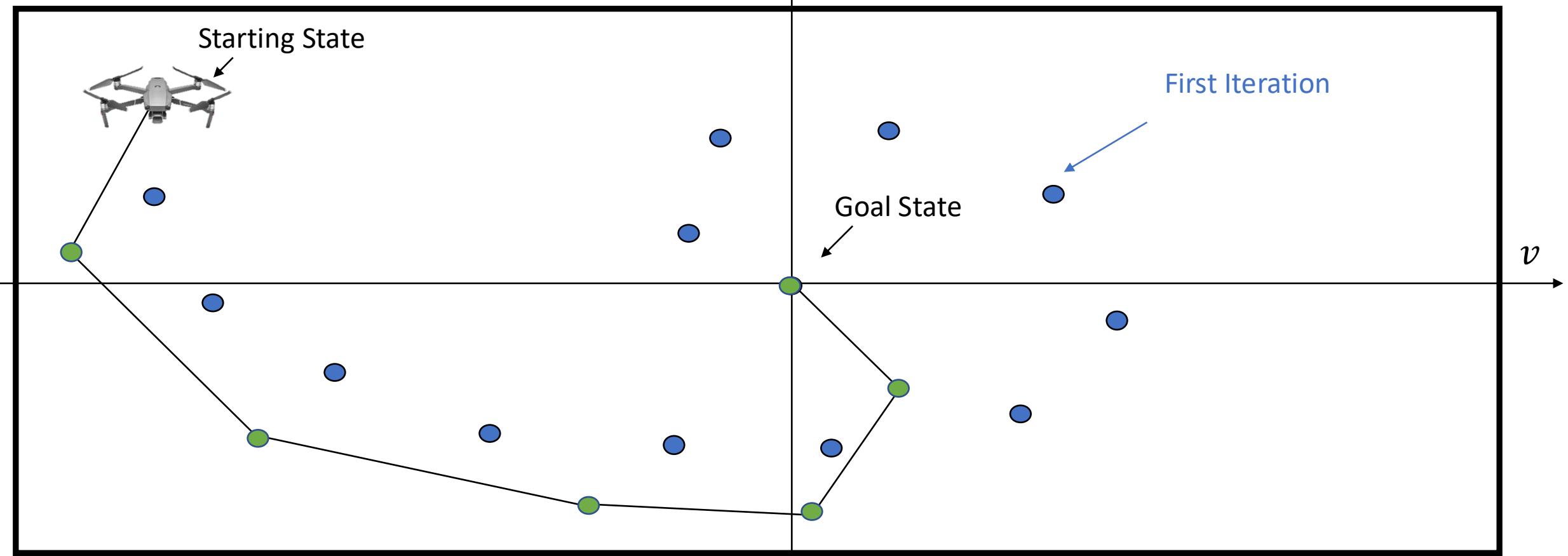
Use SS^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

Iteration 2, Step 5

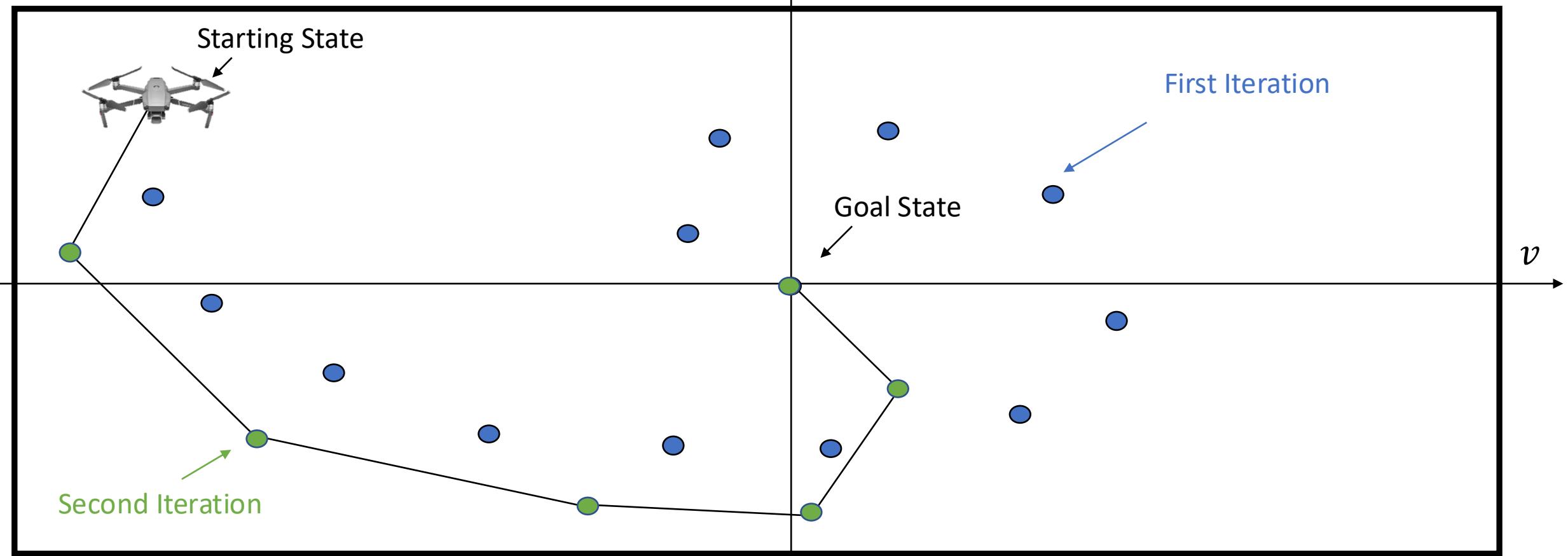
Use SS^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

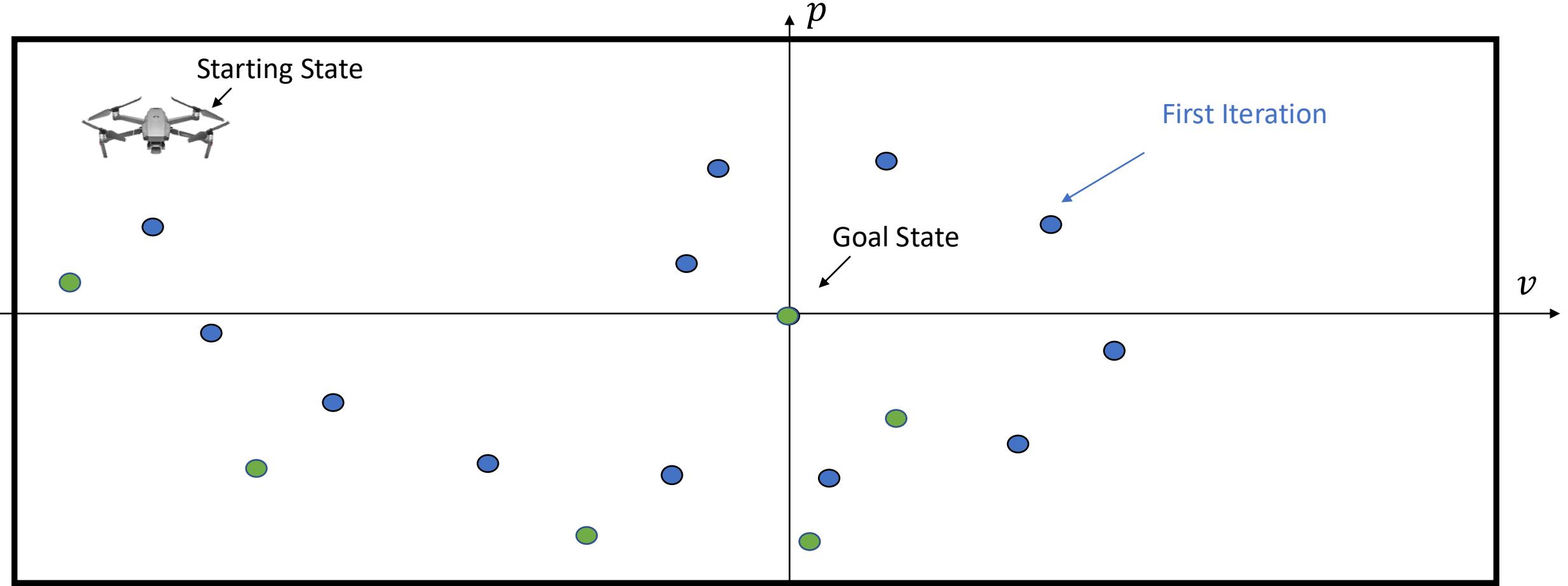
Iteration 2, Step 5

Use \mathcal{SS}^1 as terminal



- Sampled Safe Set at iteration 0
- Drone state at iteration 1
- ★ Optimal planned trajectory

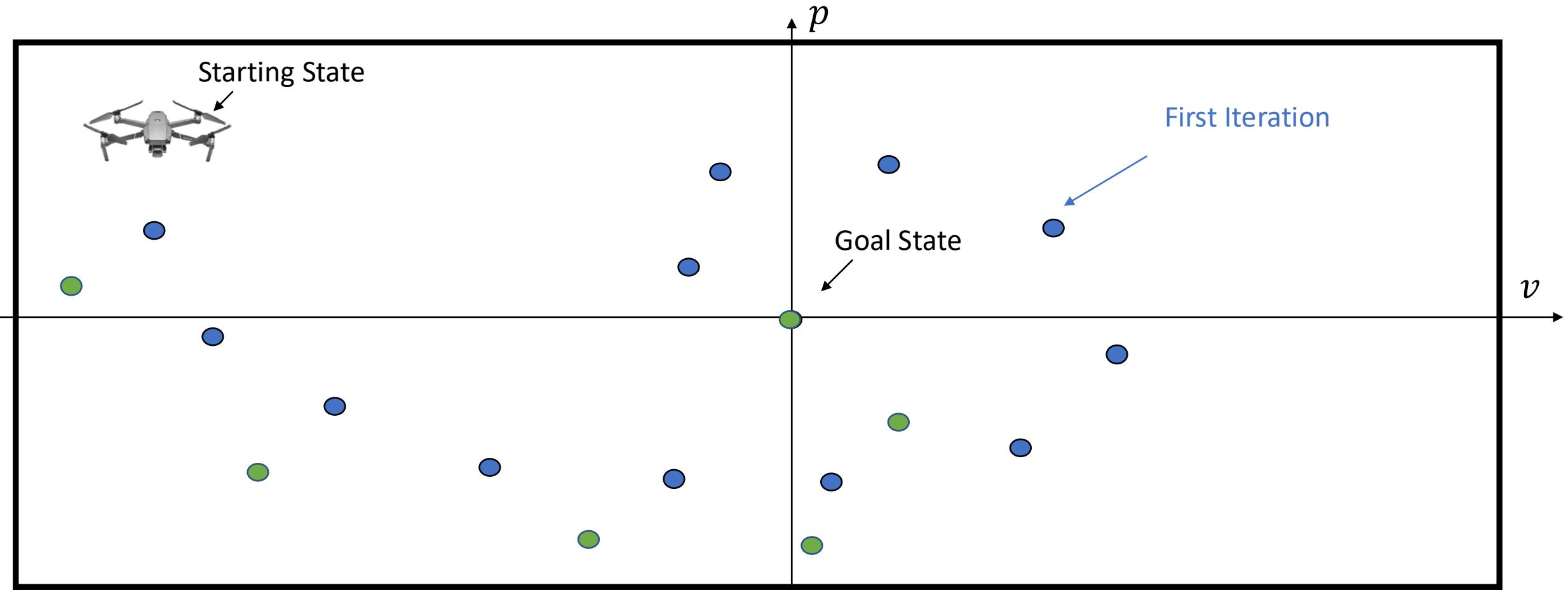
Iteration 3



Definition: Sampled Safe Set

$$\mathcal{SS}^j = \{\text{Stored Data at all iterations}\}$$

Iteration 3

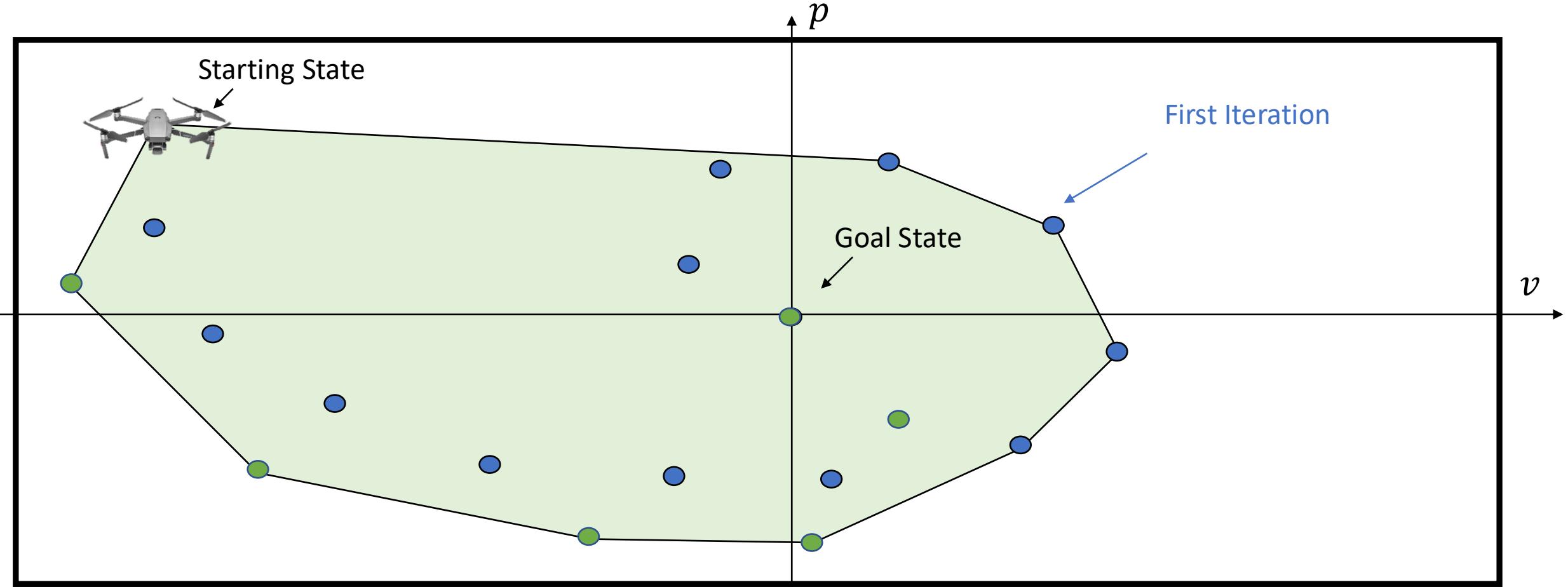


Definition: Sampled Safe Set

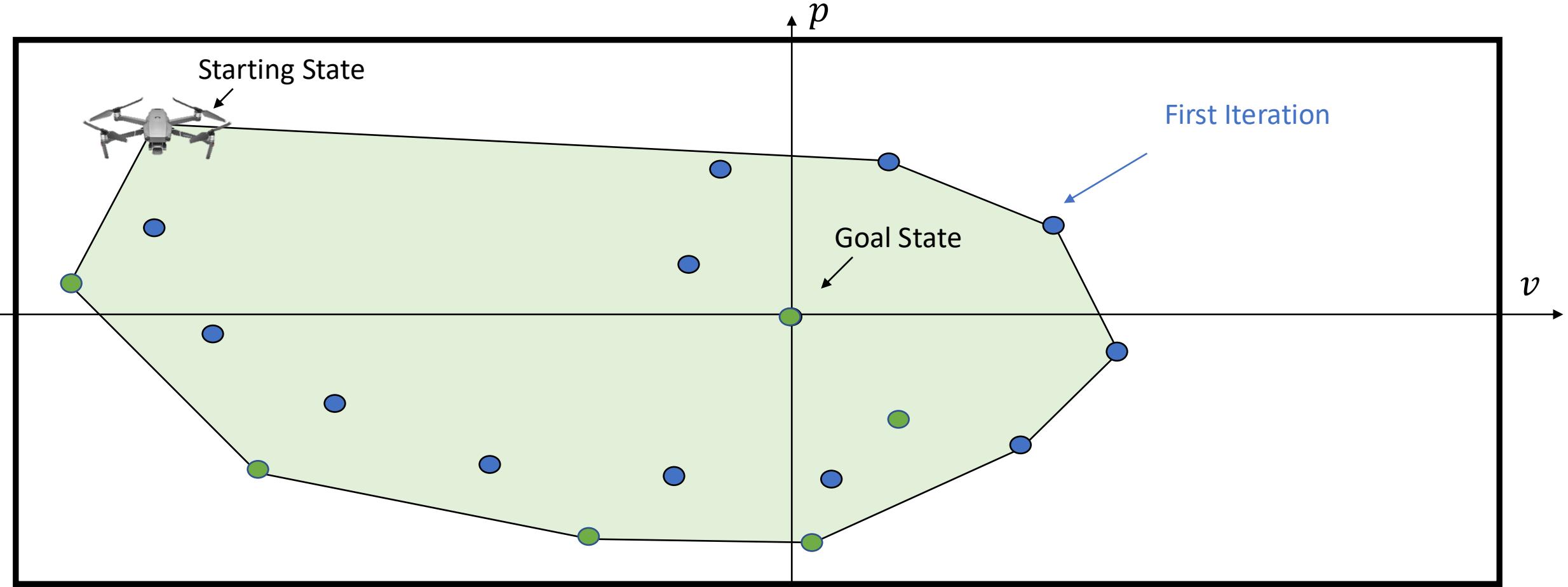
$$SS^j = \{\text{Stored Data at all iterations}\}$$

Set of states from which
the task can be completed!

Iteration 3



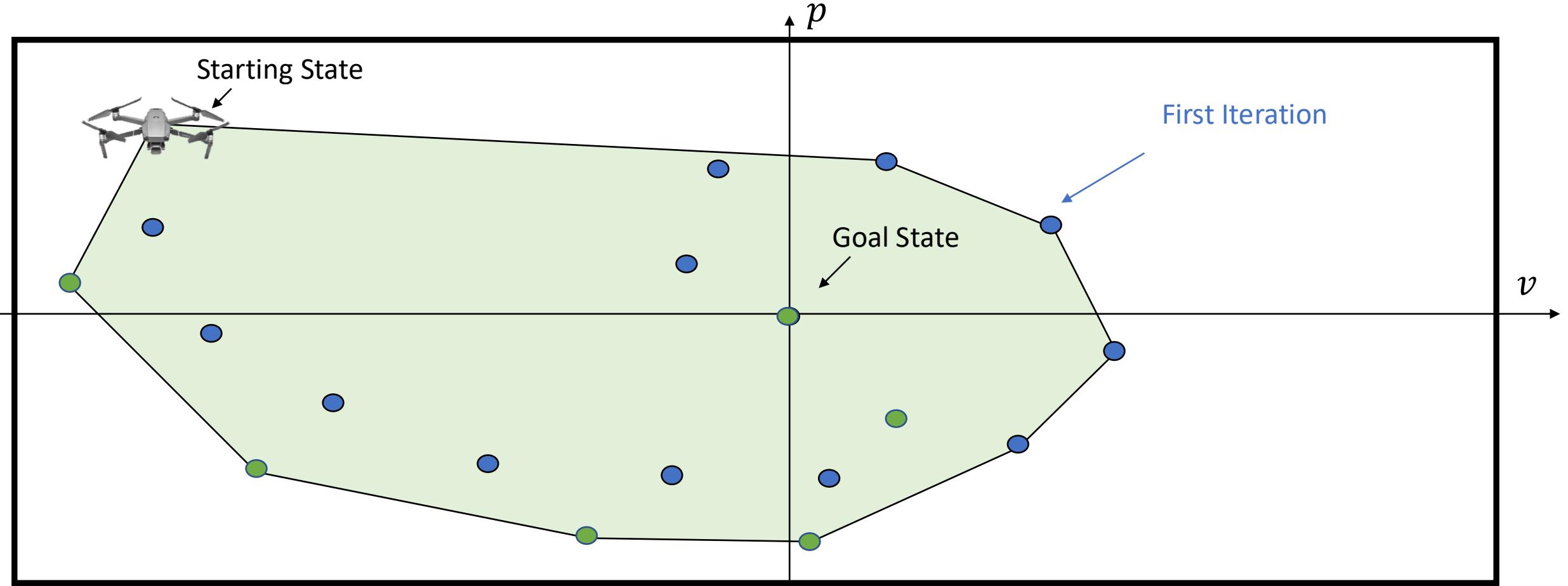
Iteration 3



Definition: Convex Safe Set

$$\mathcal{CS}^j = \text{Conv}(\{\text{Stored Data at all iterations}\})$$

Iteration 3

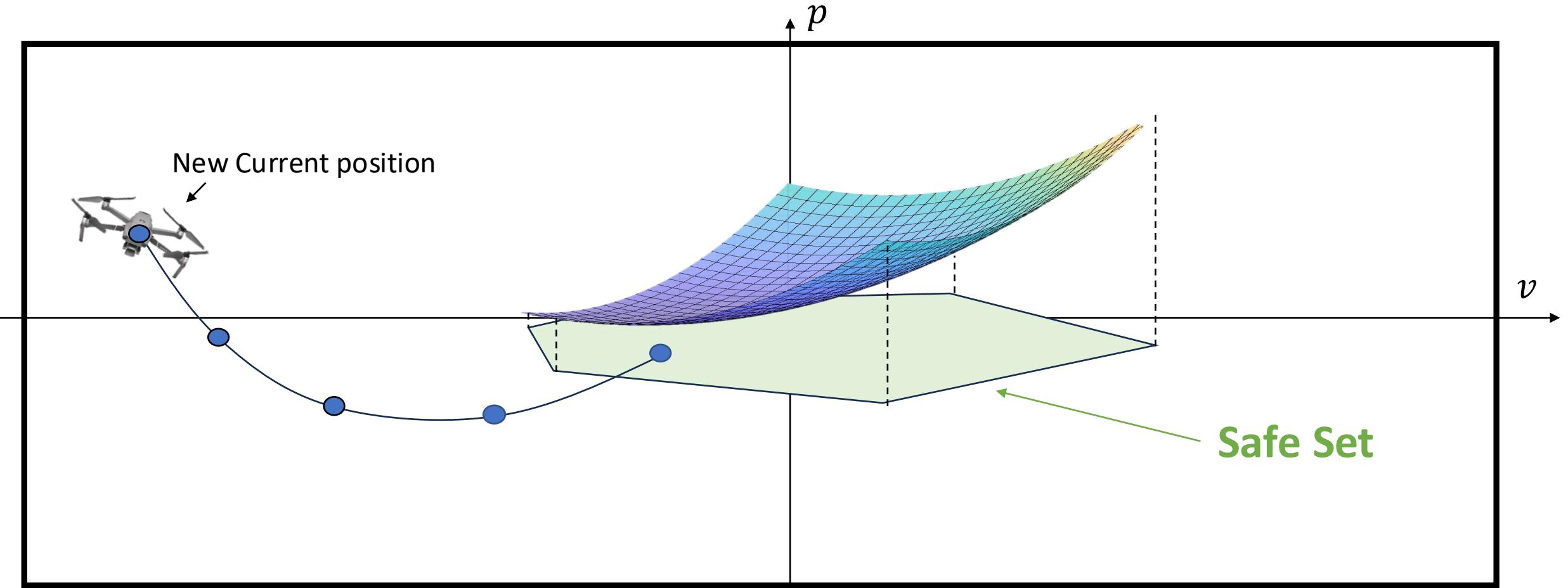


Definition: Convex Safe Set

$$\mathcal{CS}^j = \text{Conv}(\{\text{Stored Data at all iterations}\})$$

Set of states from which
the task can be completed!

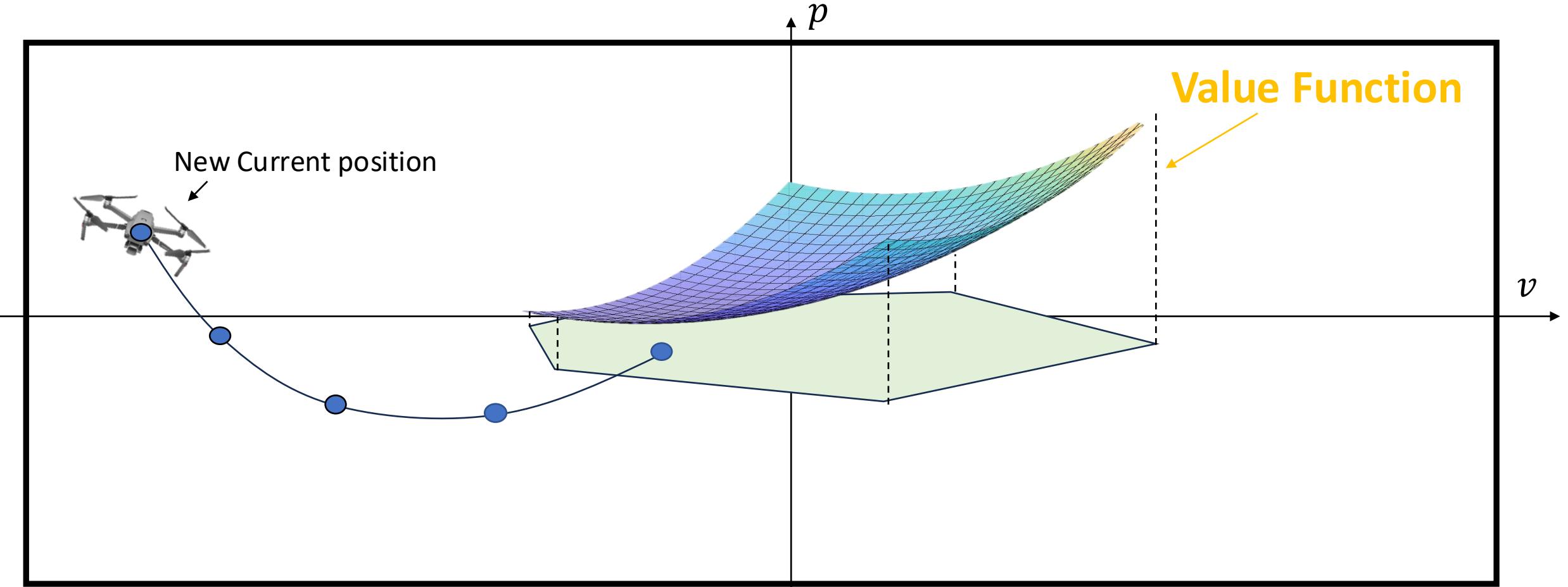
Learning Model Predictive Control (LMPC) – Key Idea



Algorithm steps:

- ▶ Get current state
- ▶ Plan a trajectory
- ▶ Execute the action

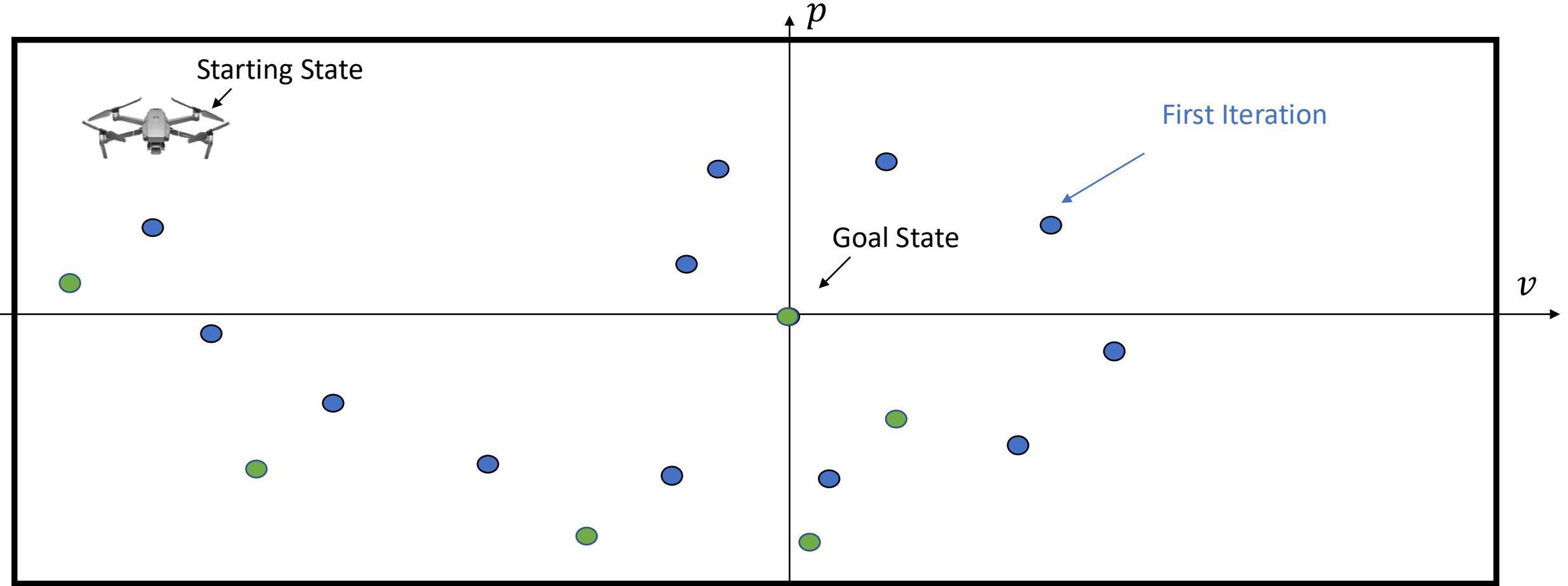
Learning Model Predictive Control (LMPC) – Key Idea



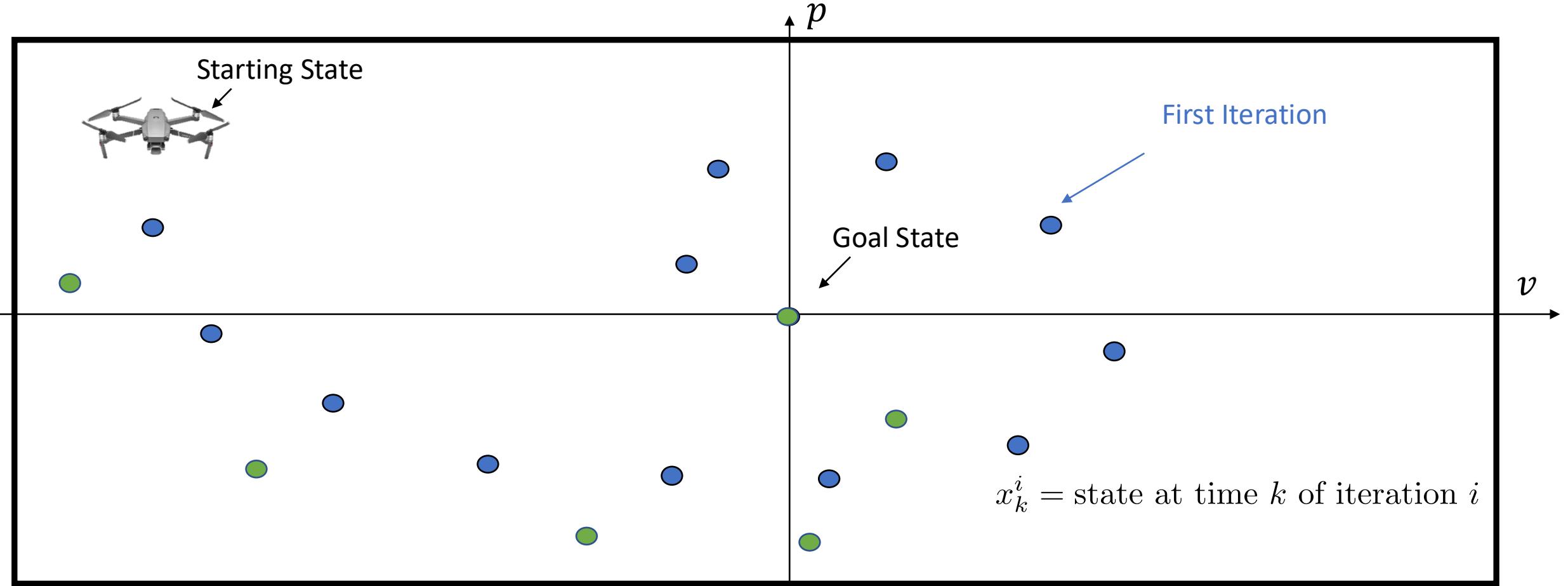
Algorithm steps:

- ▶ Get current state
- ▶ Plan a trajectory
- ▶ Execute the action

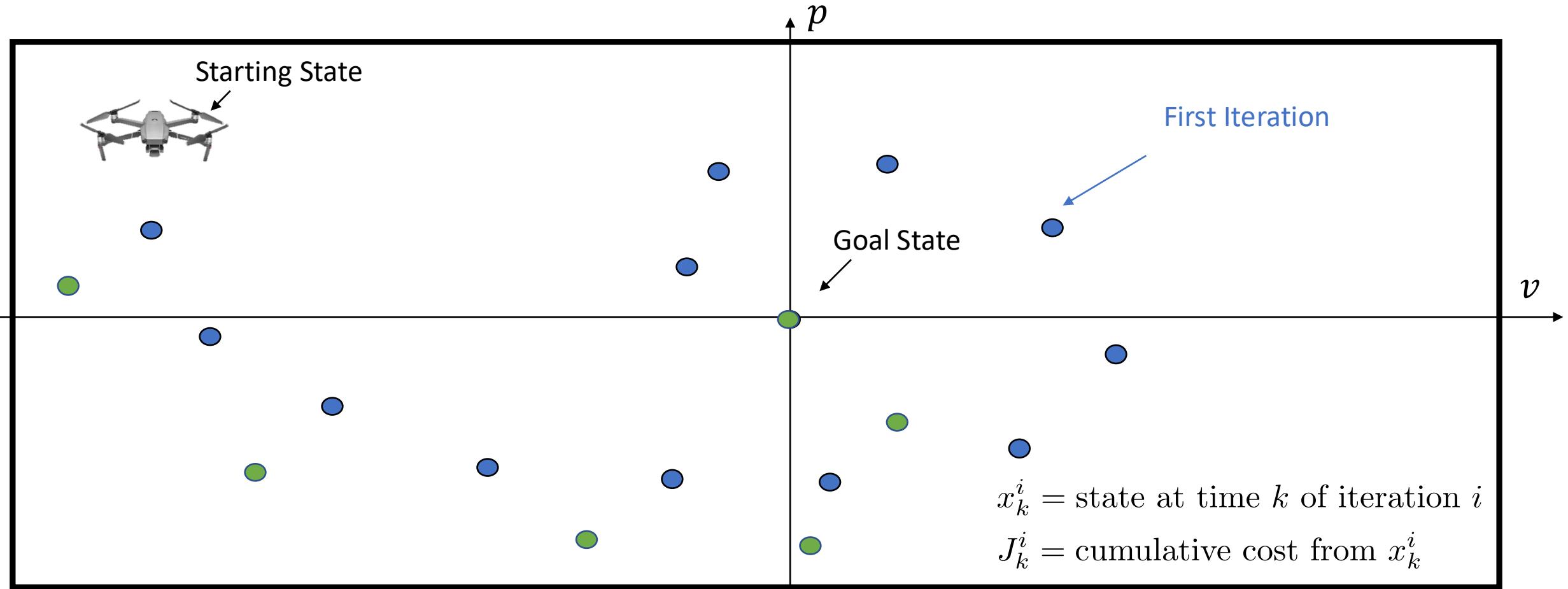
Value Function Estimation



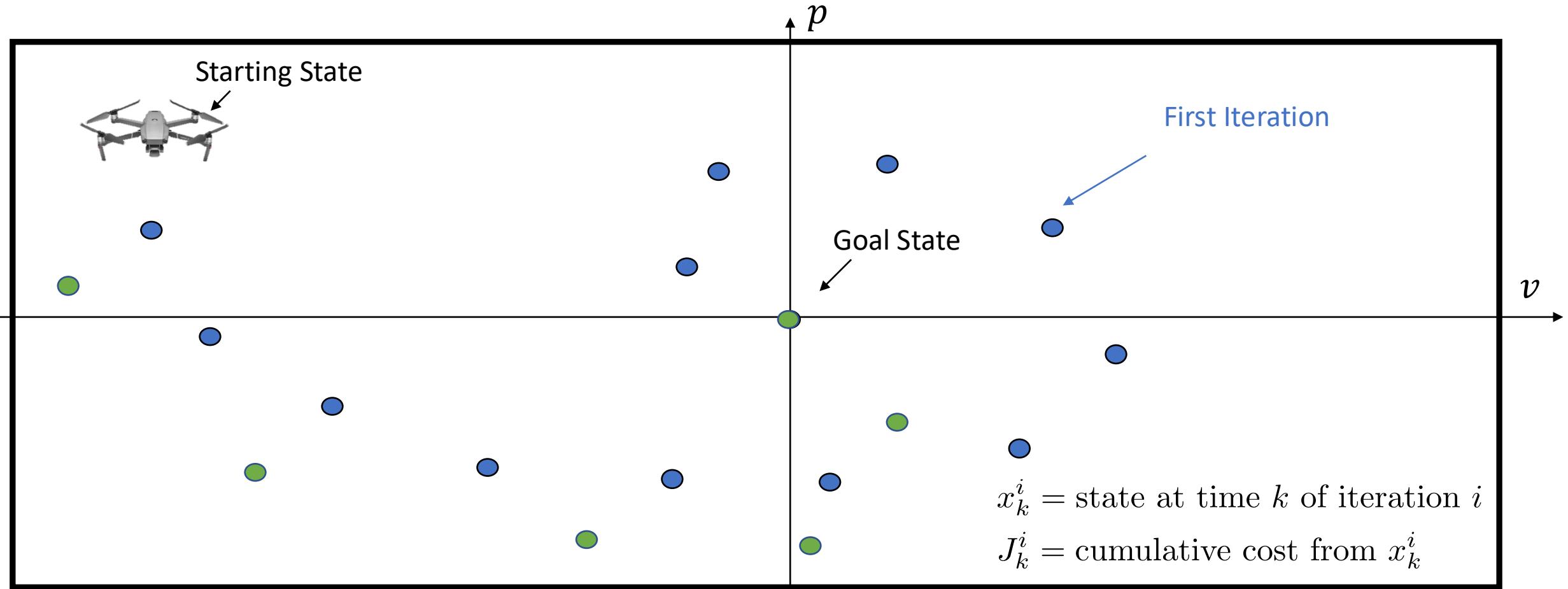
Value Function Estimation



Value Function Estimation



Value Function Estimation



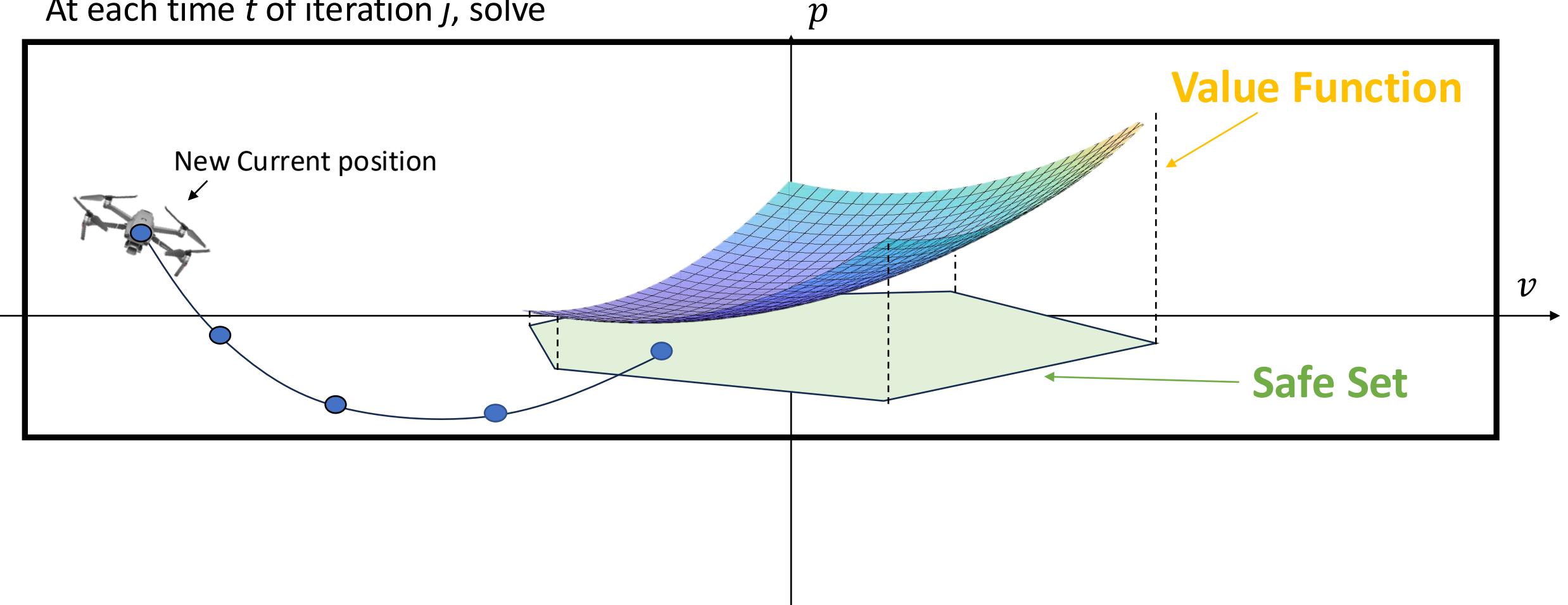
Value Function

$V^j(\textcolor{red}{x})$ = Interpolation of the set of data $\{\{(J_k^i, x_k^i)\}_{i=0}^j\}_{k=0}^K$

LMPC Summary

LMPC Summary

At each time t of iteration j , solve



LMPC Summary

At each time t of iteration j , solve

$$\begin{aligned} J(x(t)) = \min_{u_0, \dots, u_{N-1}} \quad & \sum_{k=0}^{N-1} (x_k^\top Q x_k + u_k^\top R u_k) + V^{j-1}(x_N) \\ \text{s.t.} \quad & x_{k+1} = f(x_k, u_k), \\ & x_0 = x(t), \\ & x_k \in \mathcal{X}, \quad u_k \in \mathcal{U}, \\ & x_N \in \mathcal{SS}^{j-1}, \\ & \forall k \in [0, \dots, N-1] \end{aligned}$$

LMPC Summary

At each time t of iteration j , solve

$$\begin{aligned} J(x(t)) = \min_{u_0, \dots, u_{N-1}} \quad & \sum_{k=0}^{N-1} (x_k^\top Q x_k + u_k^\top R u_k) + V^{j-1}(x_N) \\ \text{s.t.} \quad & x_{k+1} = f(x_k, u_k), \\ & x_0 = x(t), \\ & x_k \in \mathcal{X}, \quad u_k \in \mathcal{U}, \\ & x_N \in \mathcal{SS}^{j-1}, \\ & \forall k \in [0, \dots, N-1] \end{aligned}$$

Guarantees for constrained (linear) systems [1,2]

The properties of the (convex) safe set and (convex) V-function allows us to guarantee:

- ▶ **Safety**: constraint satisfaction at iteration $j \rightarrow$ satisfaction at iteration $j+1$
- ▶ **Non-decreasing Performance**: closed-loop cost at iteration $j \geq$ closed-loop cost at iteration $j+1$
- ▶ **Performance Improvement**: closed-loop cost strictly decreasing at each iteration (LICQ required)
- ▶ **(Global) optimality**: steady state trajectory is optimal for the original problem (LICQ required)

[1] U. Rosolia, F. Borrelli. "Learning model predictive control for iterative tasks. a data-driven control framework." *IEEE Transactions on Automatic Control* (2018).

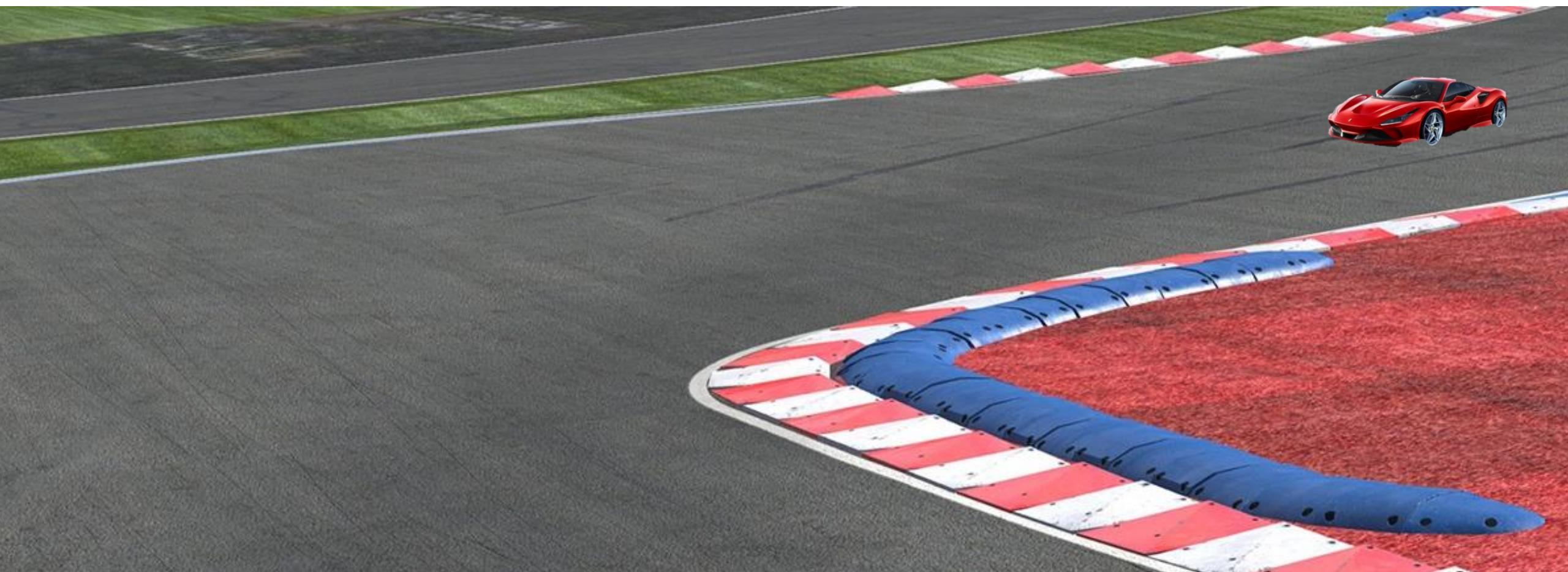
[2] U. Rosolia, F. Borrelli. "Learning model predictive control for iterative tasks: A computationally efficient approach for linear system." *IFAC-PapersOnLine* (2017)

[3] U. Rosolia, Y. Lian, E. Maddalena, G. Ferrari-Trecate, and C. N. Jones. "On the Optimality and Convergence Properties of the Iterative Learning Model Predictive Controller." *IEEE Transactions on Automatic Control* (2022).

Autonomous Racing

Goal: Minimize lap time

Requirement: Guarantee safety



Three key components to learn

Prediction Model

Model-based RL

Value Function

Model-free RL

Safety-critical Control

Safe Set

Three key components to learn

Prediction Model

Model-based RL

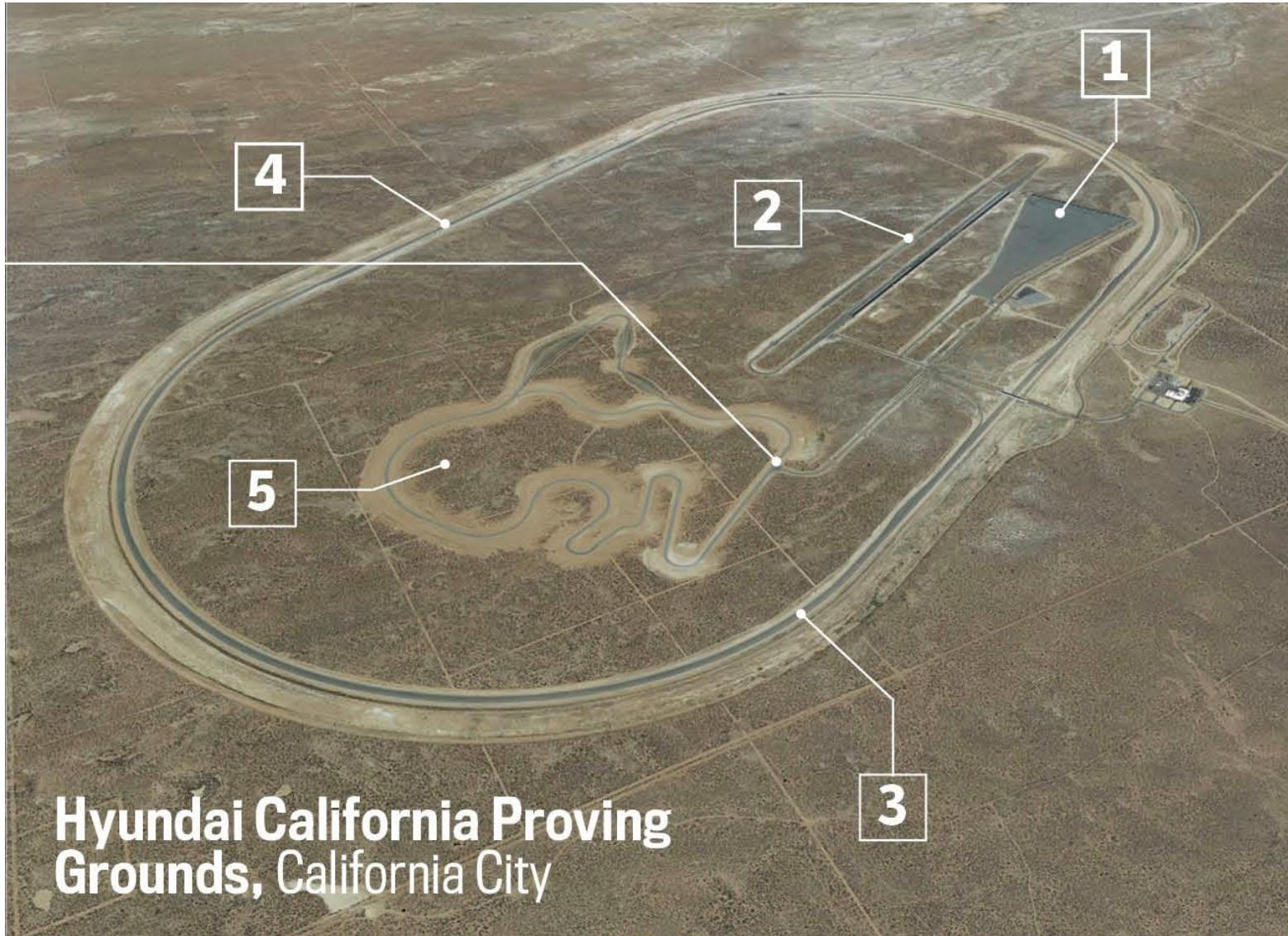
Value Function

Model-free RL

Safety-critical Control

Safe Set

Hyundai California Proving Ground



Hyundai California Proving Ground

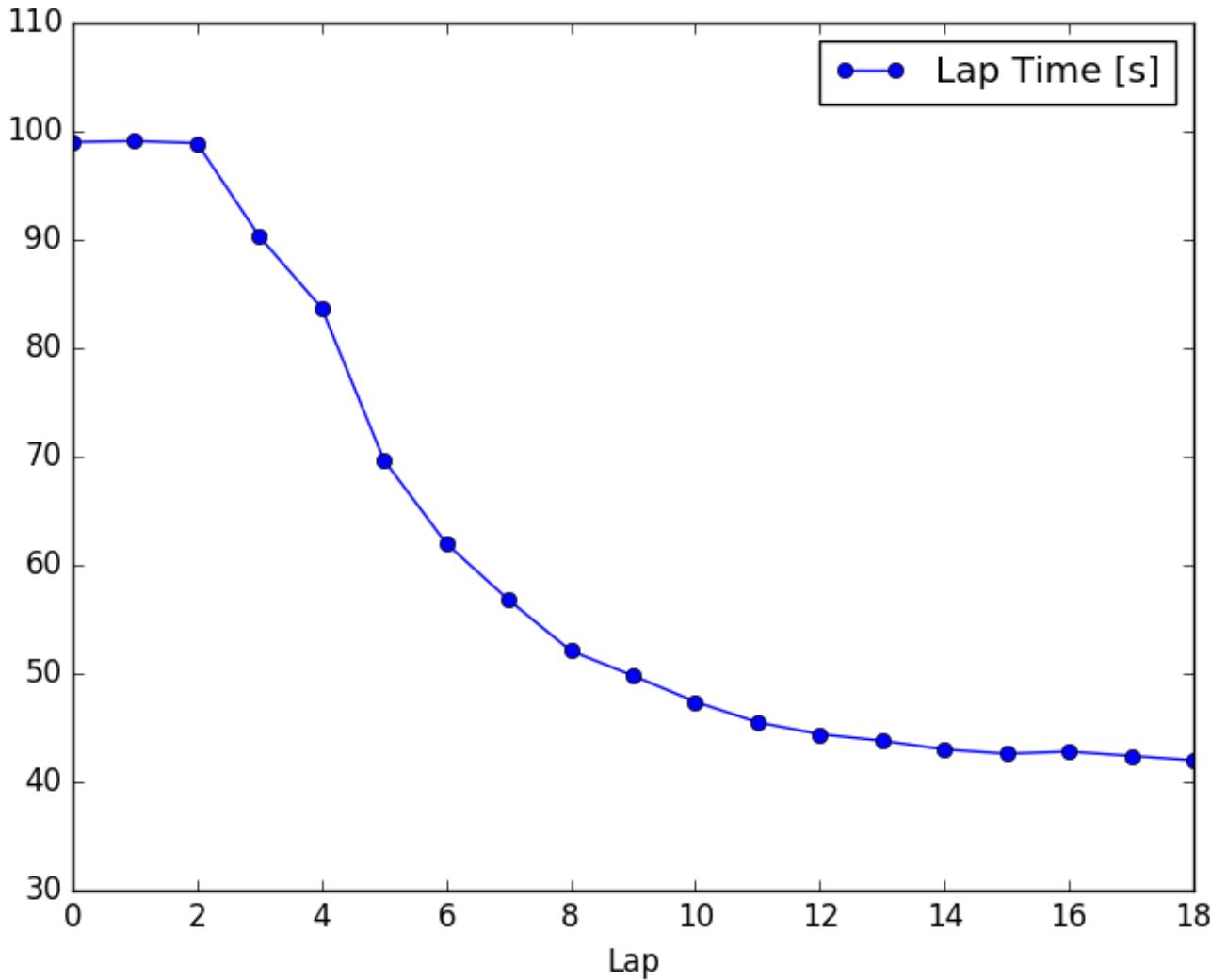
Starting Line

Finish Line

Learning Model Predictive Controller full-size vehicle experiments

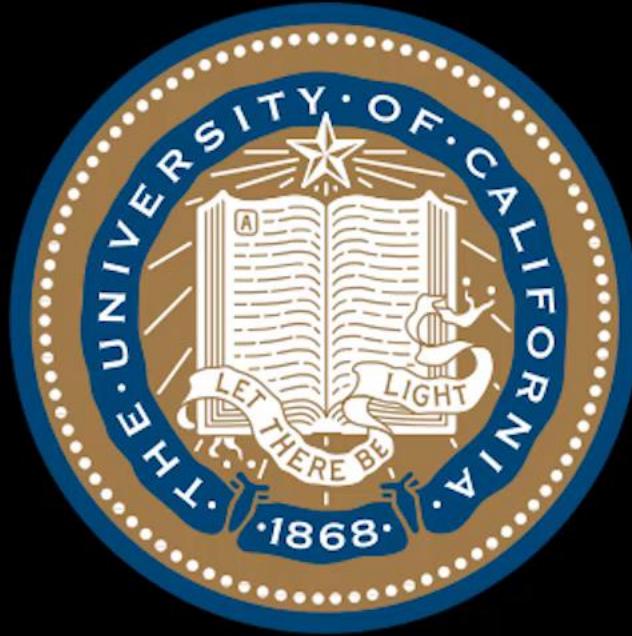
Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Lap Time



The control policy is constructed using ~1k data points (last 2 laps)

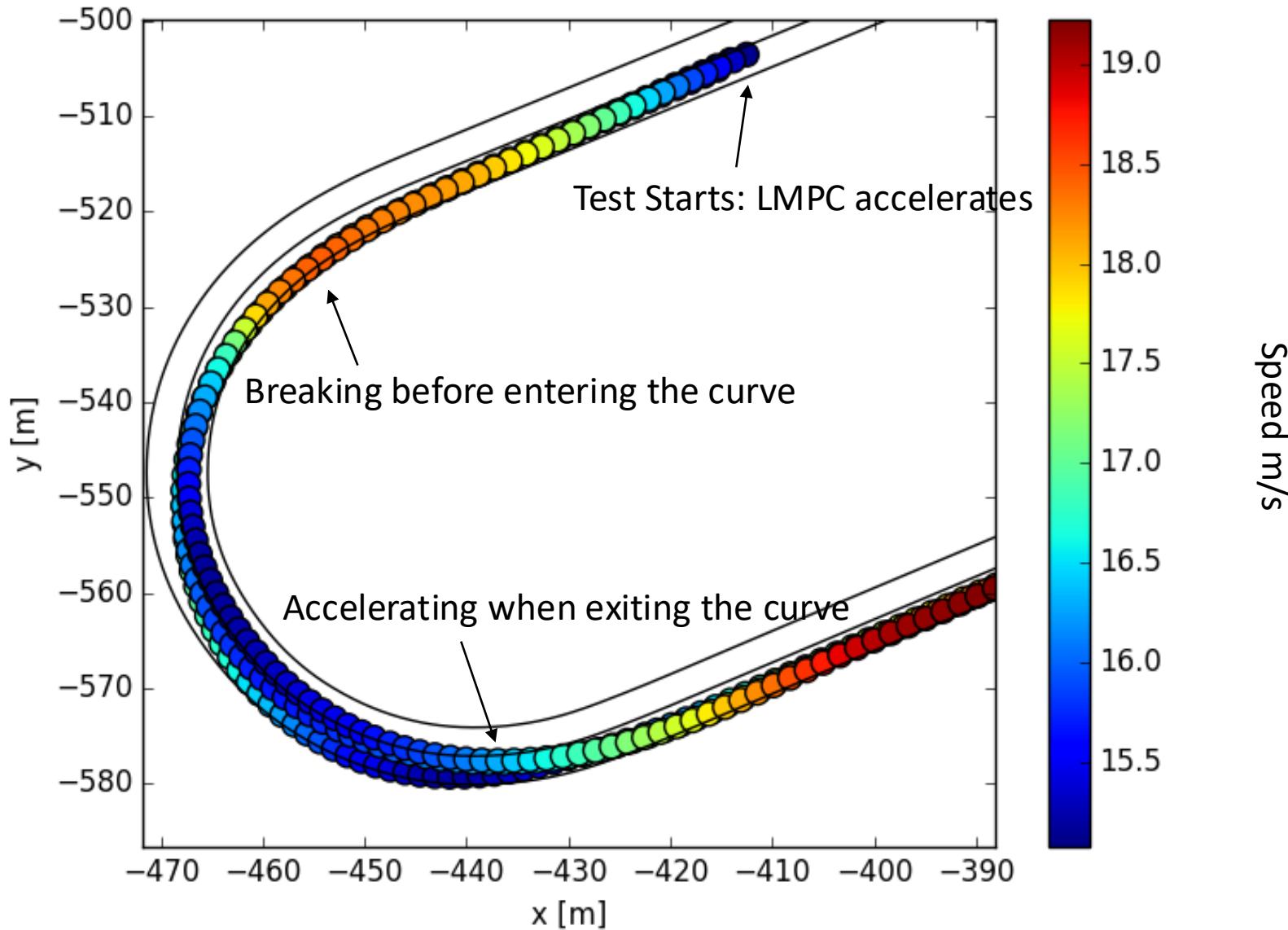
The control action is computed using ~100 data points



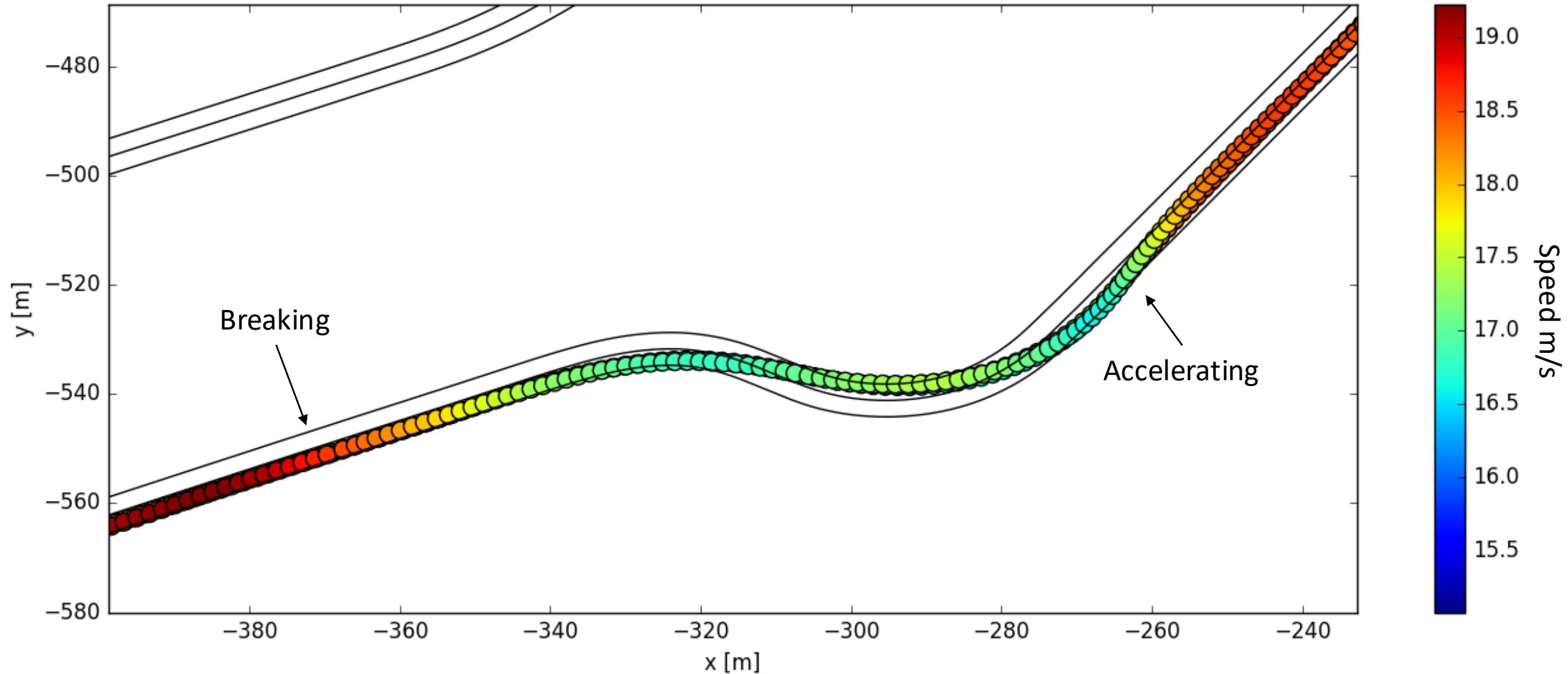
Learning Model Predictive Controller full-size vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Velocity Profile at Convergence (Curve 1)



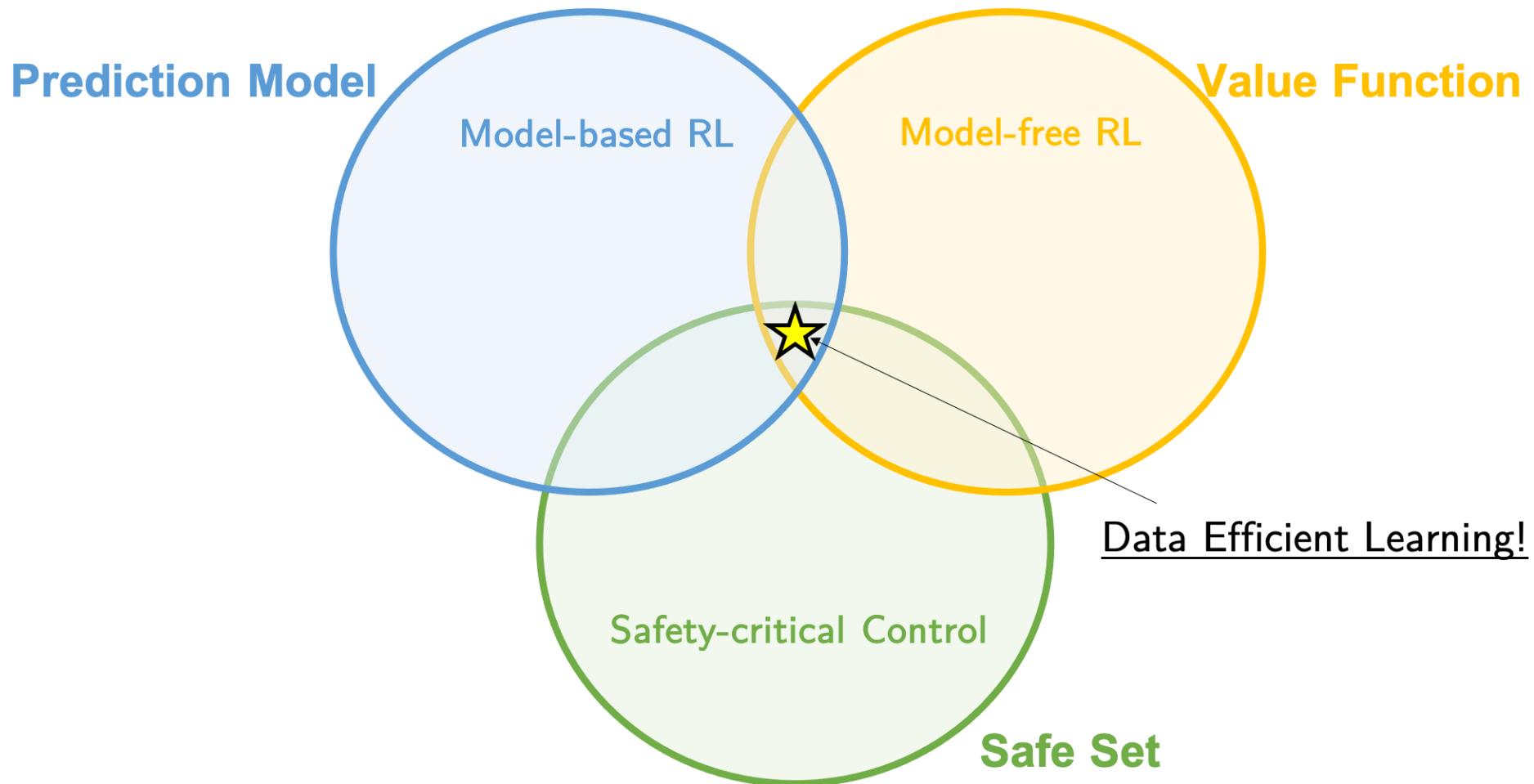
Velocity Profile at Convergence (Chicane)



Learning Model Predictive Control for Autonomous Racing

The key components

- ▶ Predicted trajectory given by **prediction model**
- ▶ Predicted cost estimated by **value function**
- ▶ Safe region estimated by the **safe set**

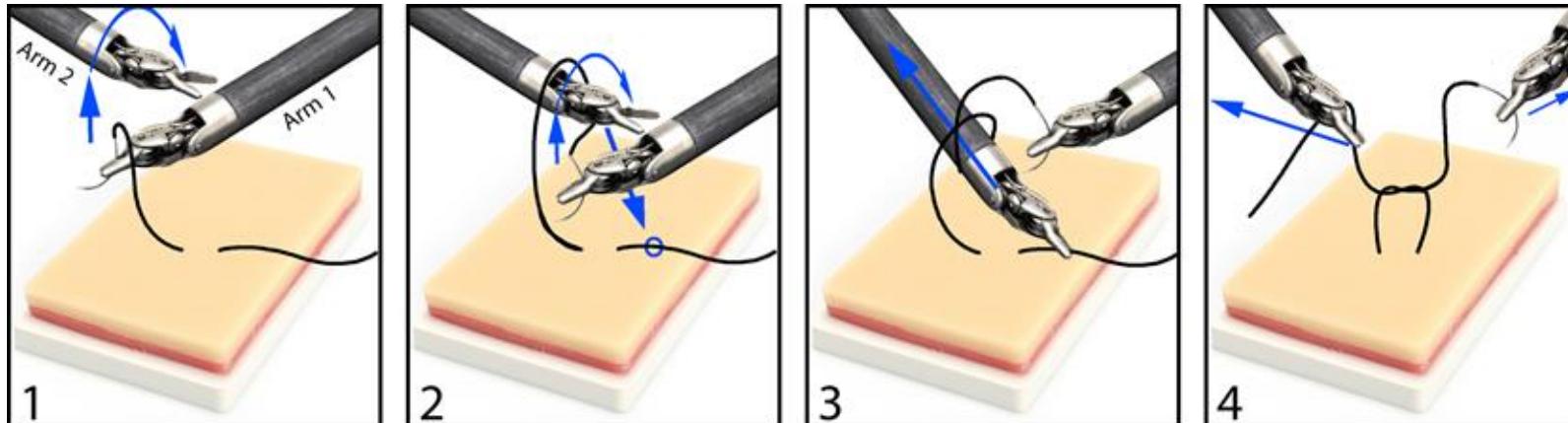


Terminal Components via DNN

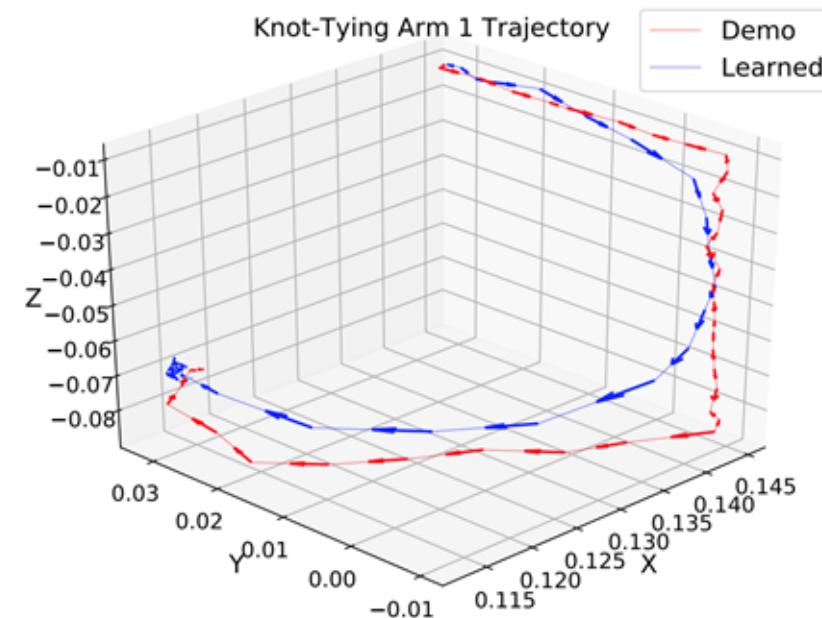
AUTOLAB

Brijen

Ashwin

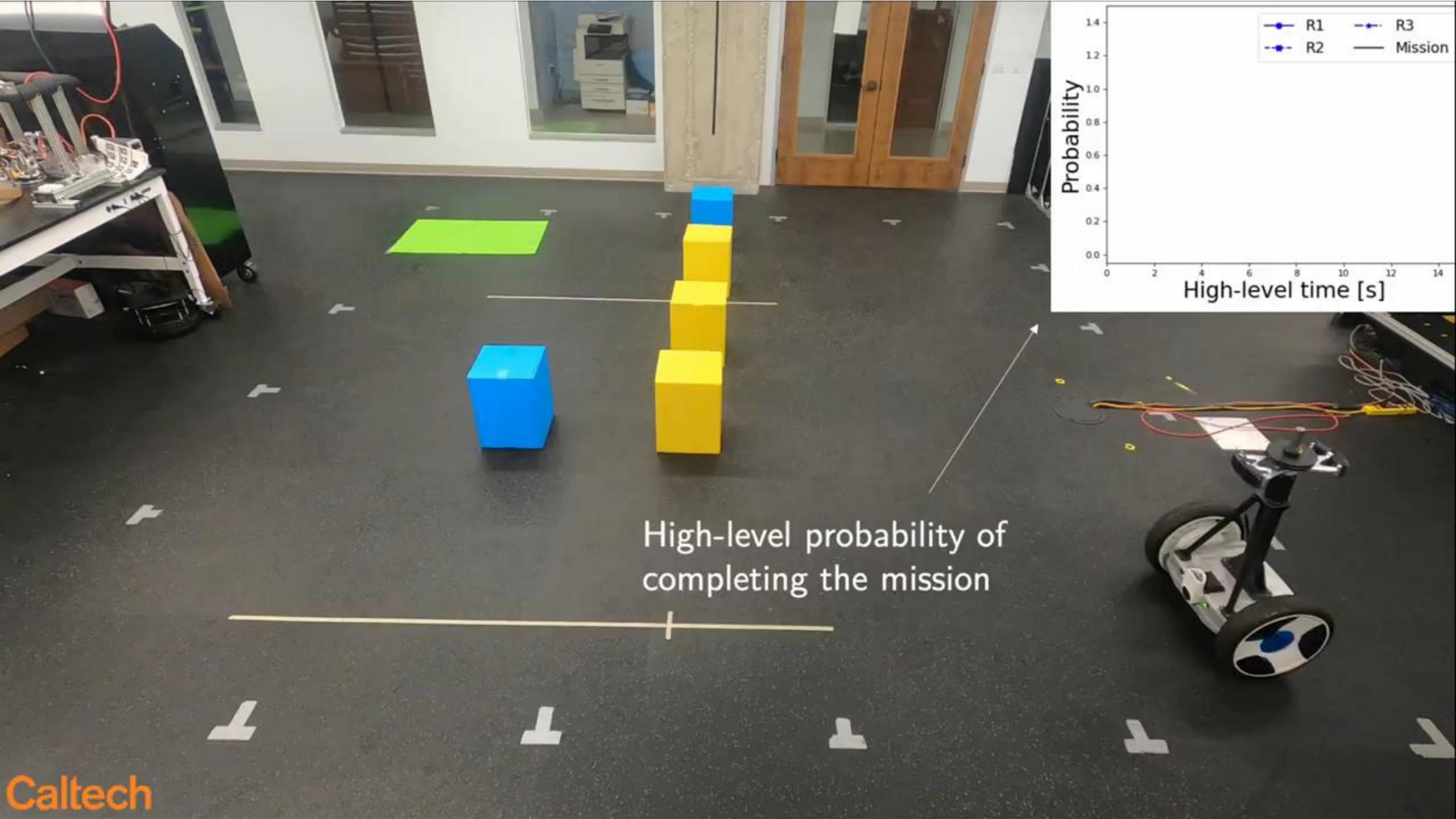


- ▶ Safe Set constructed using non-parametric estimation
- ▶ Model ensemble and input sampling strategies for MPC
- ▶ Knot tying task on real surgical robot with inefficient demos (red)
- ▶ Constraints: stay within 1 cm tube of reference trajectory
- ▶ SAVED successfully smooths + optimizes demos



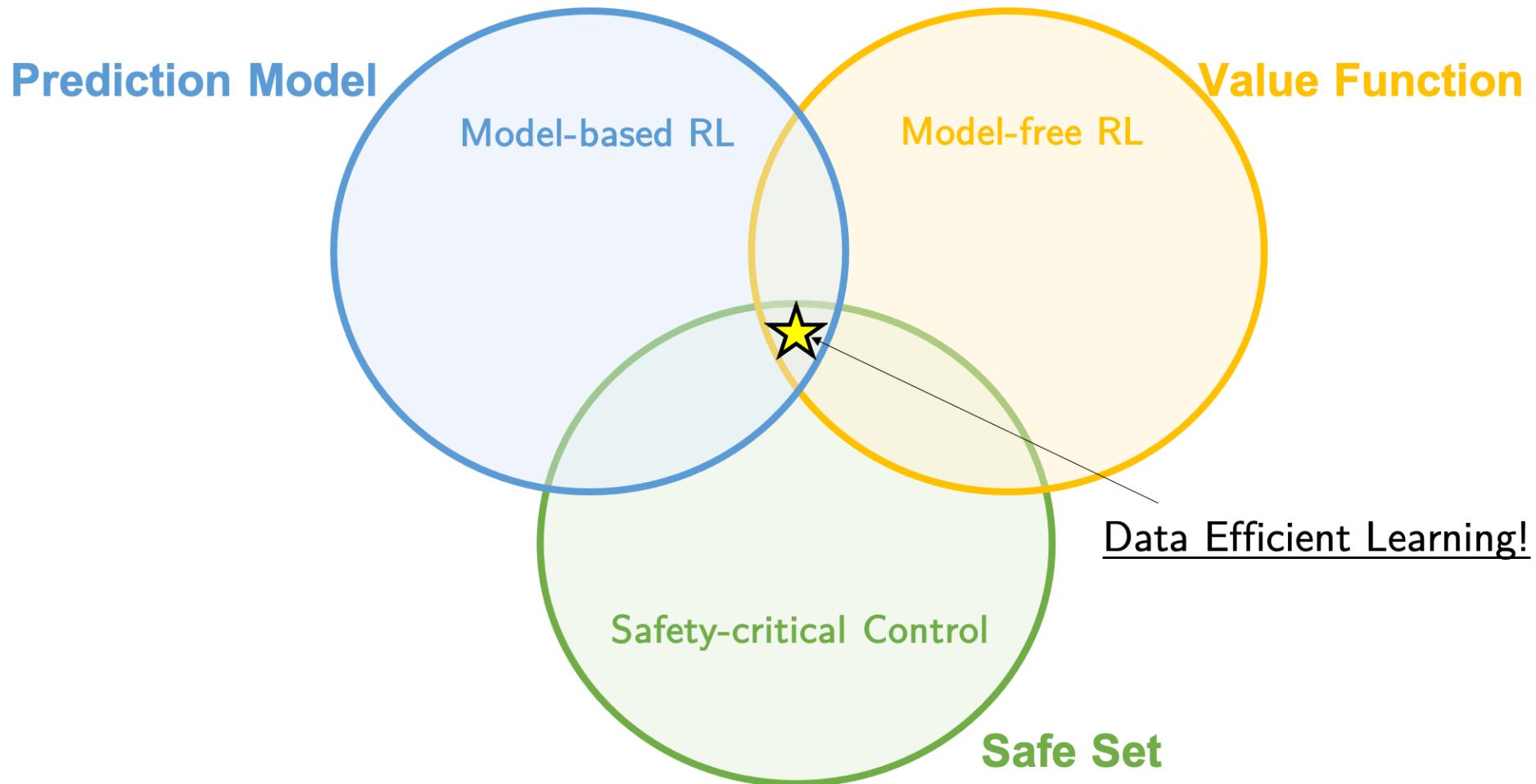
"Safety Augmented Value Estimation from Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks.", B. Thananjeyan*, A. Balakrishna*, U. Rosolia, F. Li, R. McAllister, J. E. Gonzalez, S. Levine, F. Borrelli, K. Goldberg *IEEE Robotics and Automation Letters (RA-L)* (2020)

*= equal contribution



The key components

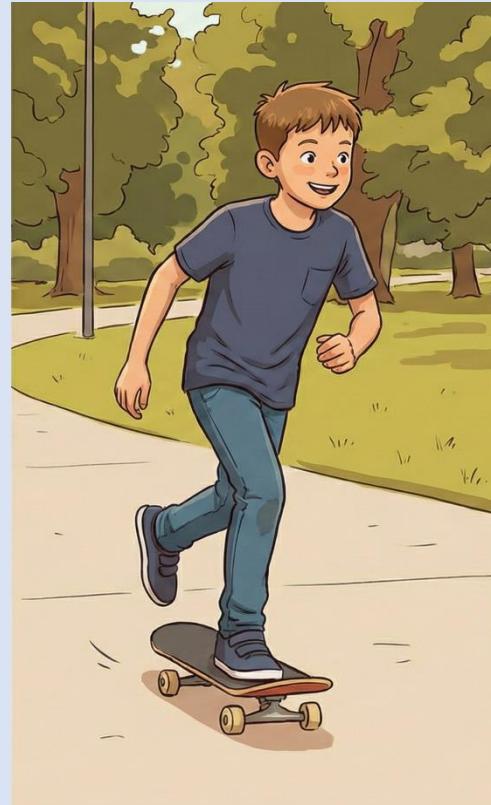
- ▶ Predicted trajectory given by **prediction model**
- ▶ Predicted cost estimated by **value function**
- ▶ Safe region estimated by the **safe set**



The three phases of learning

The three phases of learning

Skill improvement



The three phases of learning

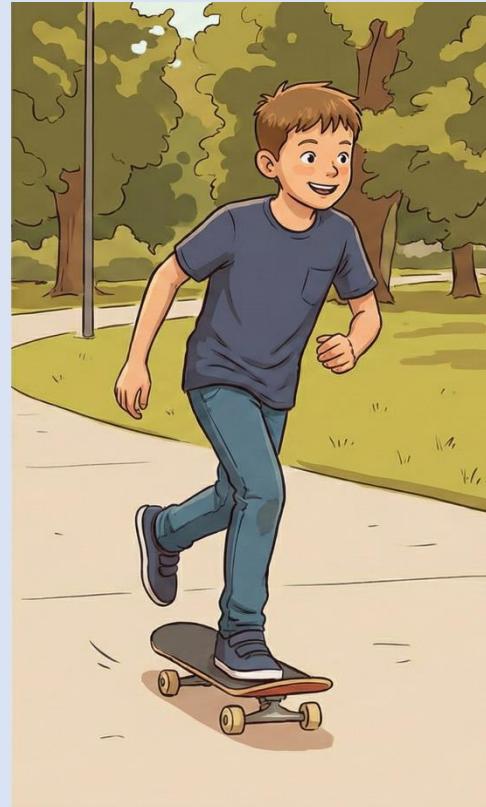
Skill acquisition

Skill improvement

The three phases of learning

Skill acquisition

Skill improvement

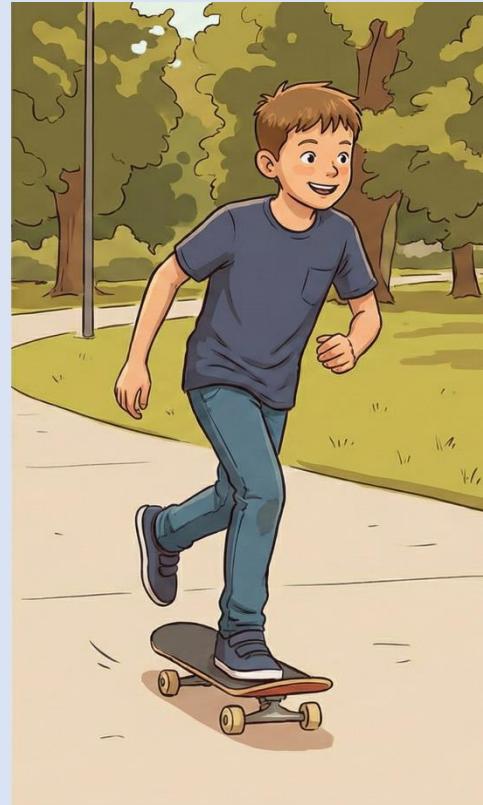


Skill automation

The three phases of learning

Skill acquisition

Skill improvement



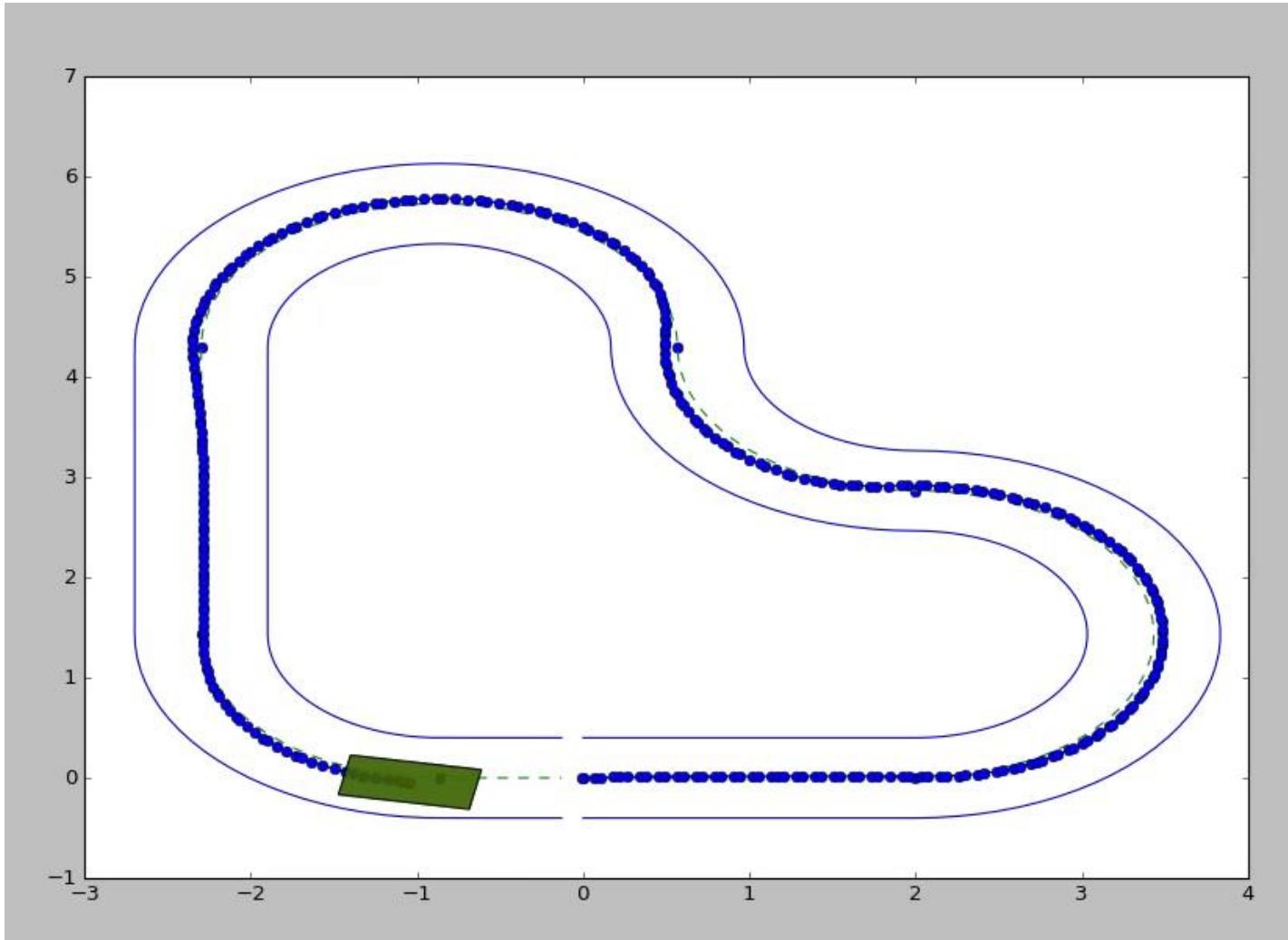
Skill automation



Do you need the safe set? – Yes

LMPC without Invariant Set

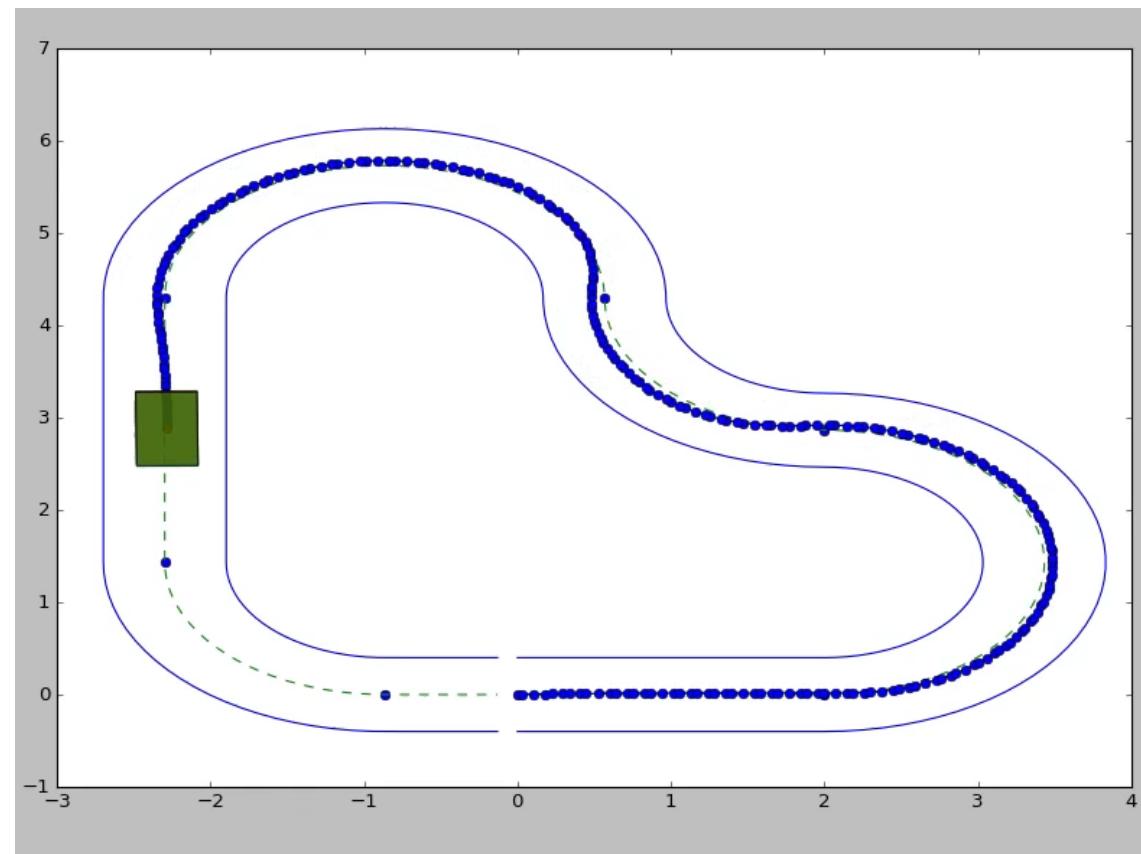
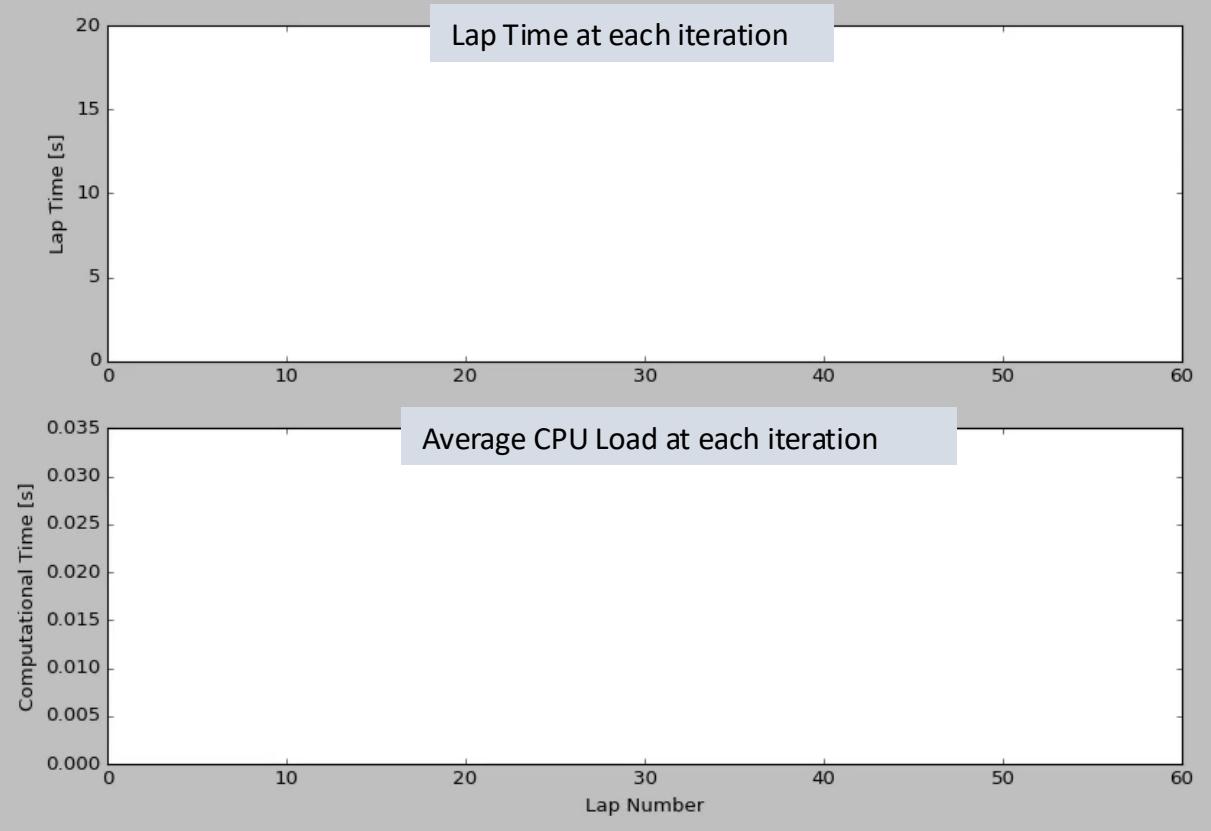
The controller extrapolates the V-function on the Vx dimension



Do you need to Predict to Learn? Yes

When the LMPC horizon is $N = 1$ the controller

- ▶ solves the Bellman equation using the V-function as value function approximation
- ▶ does not explore the state space as it cannot plan outside the safe set

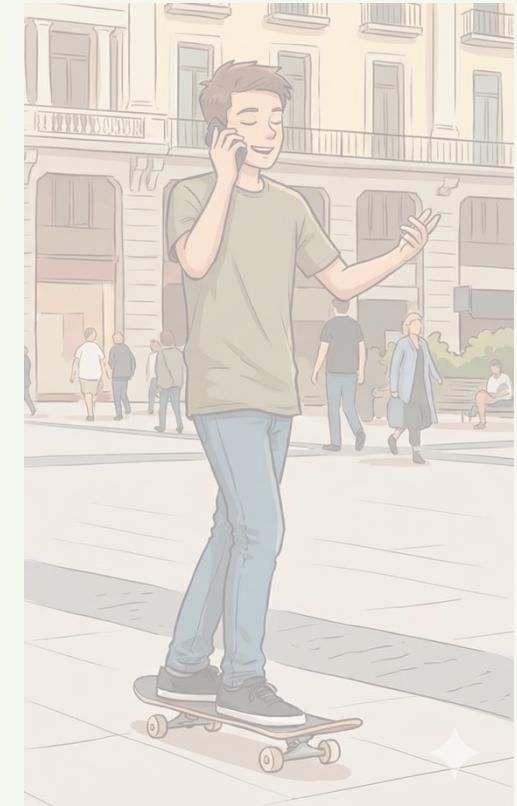


The three phases of learning

Skill acquisition

Skill improvement

Skill automation



The three phases of learning

Skill acquisition

Skill improvement



Skill automation

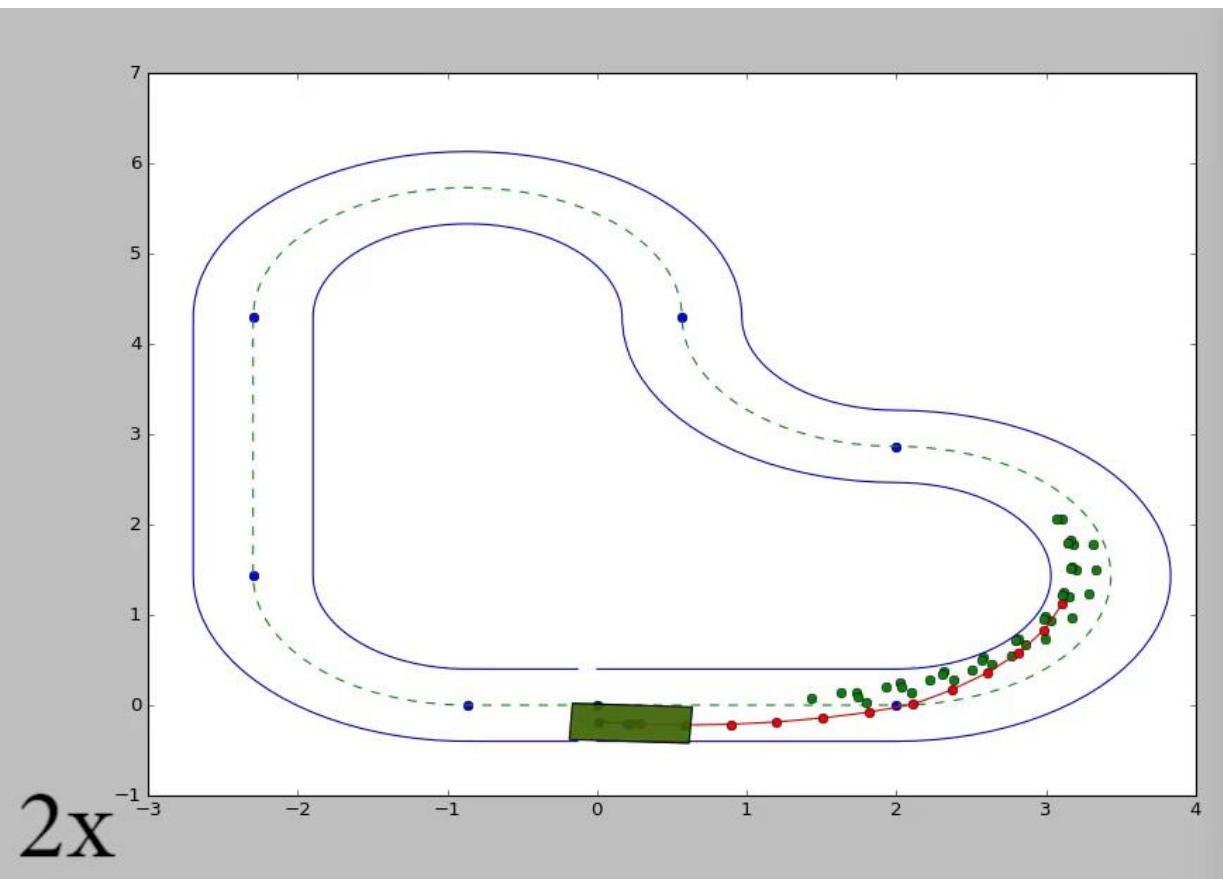
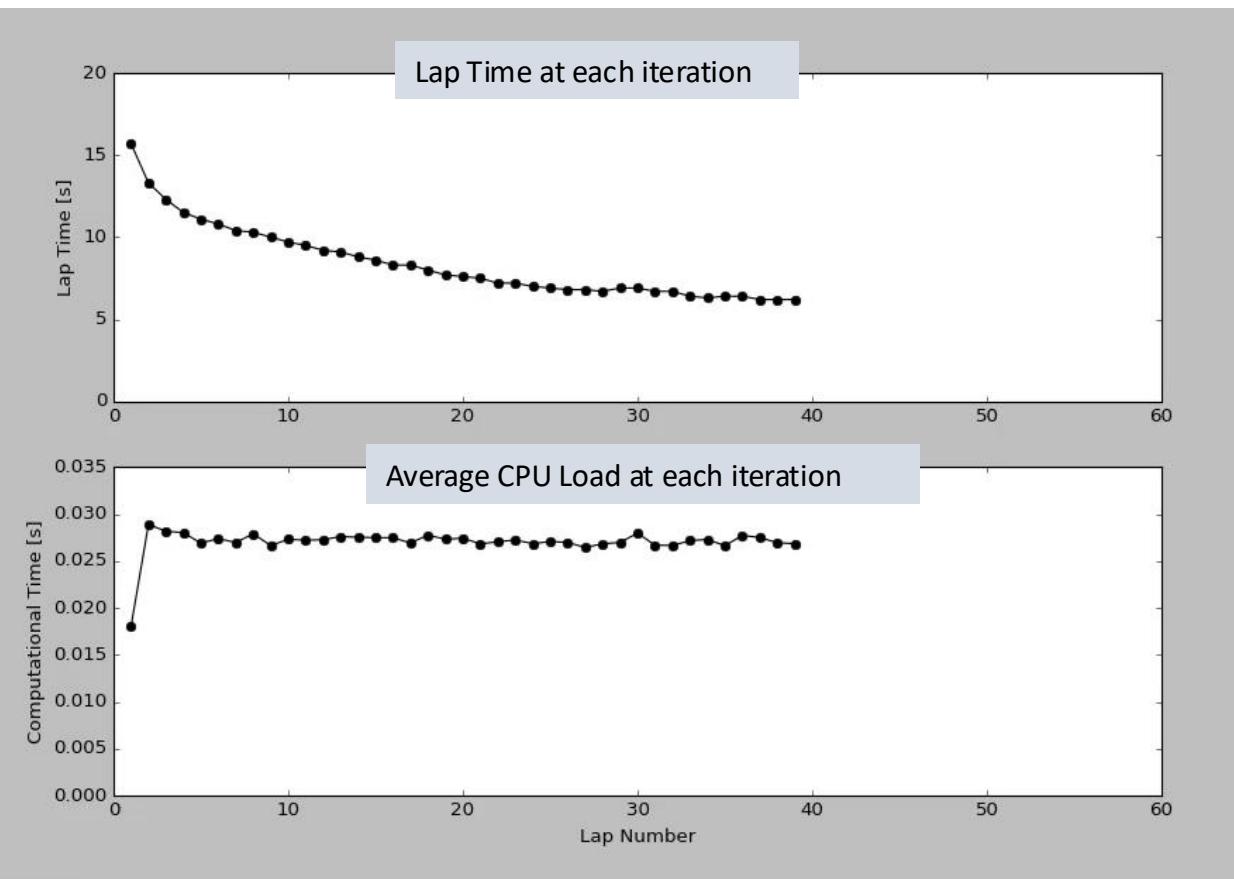
The three phases of learning

Skill acquisition

Skill improvement

Skill automation

Do you need to Predict at Convergence? No



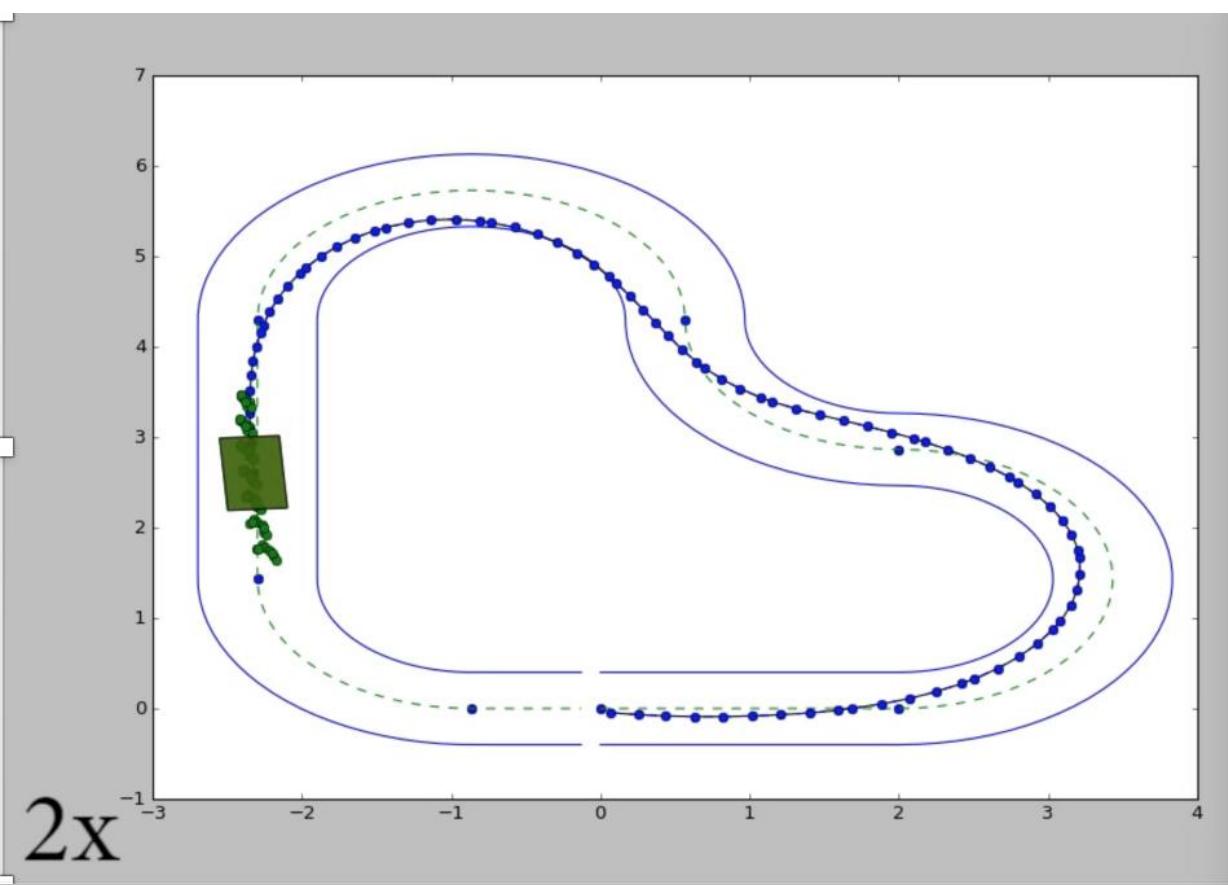
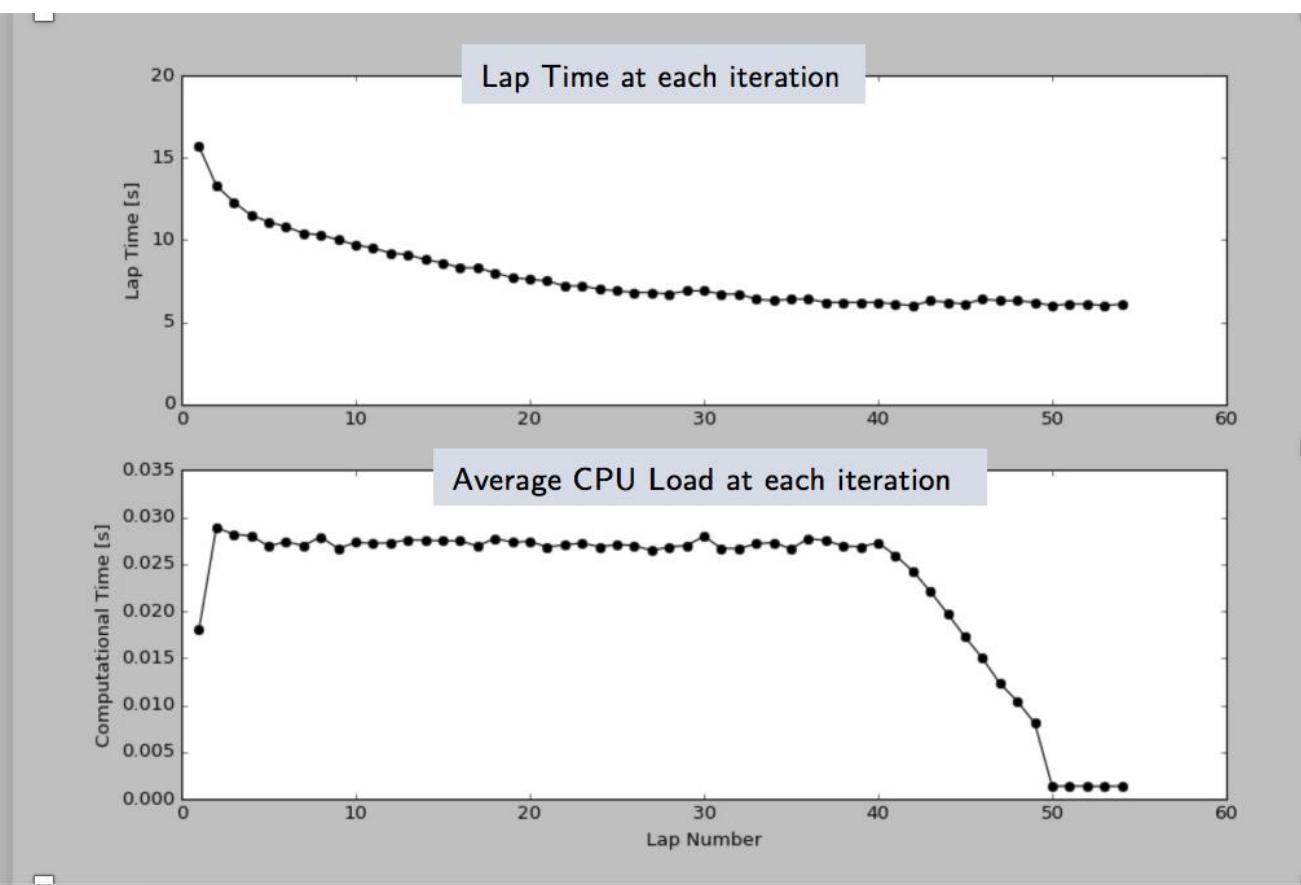
Do you need to Predict at Convergence? No

Value Function Approximation

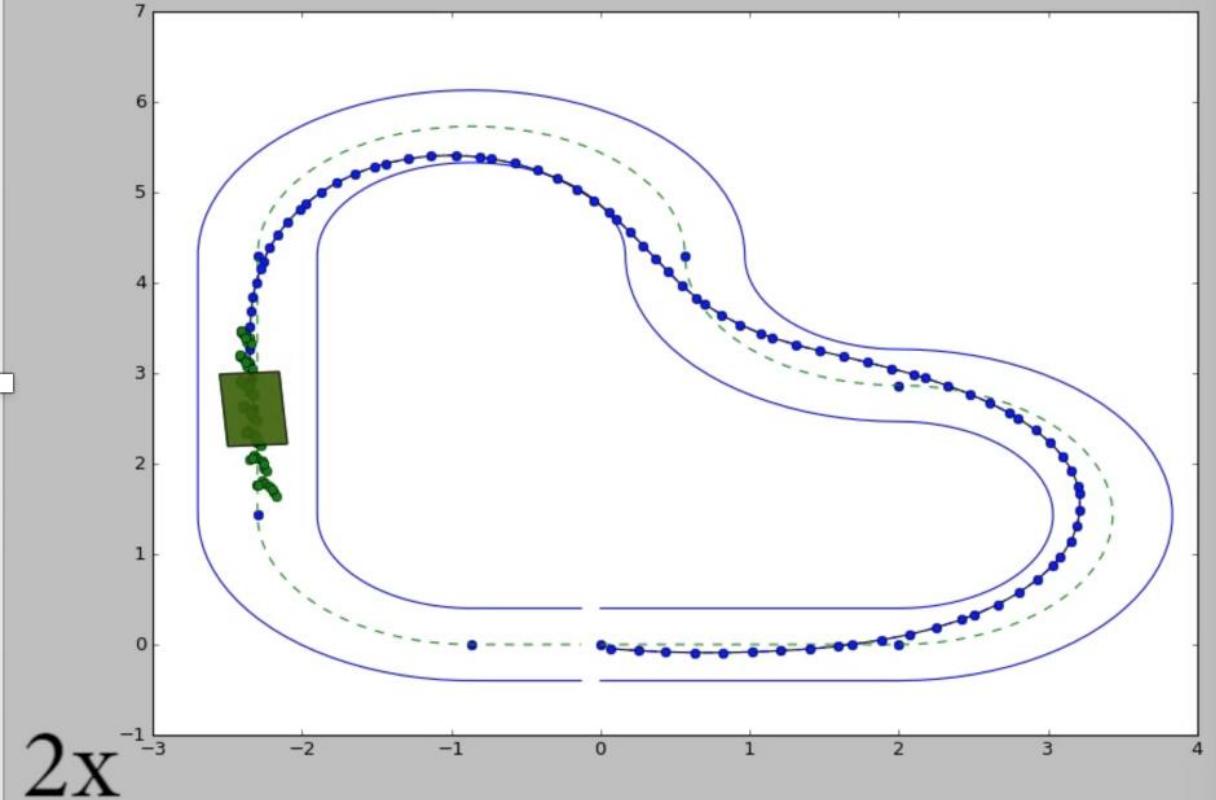
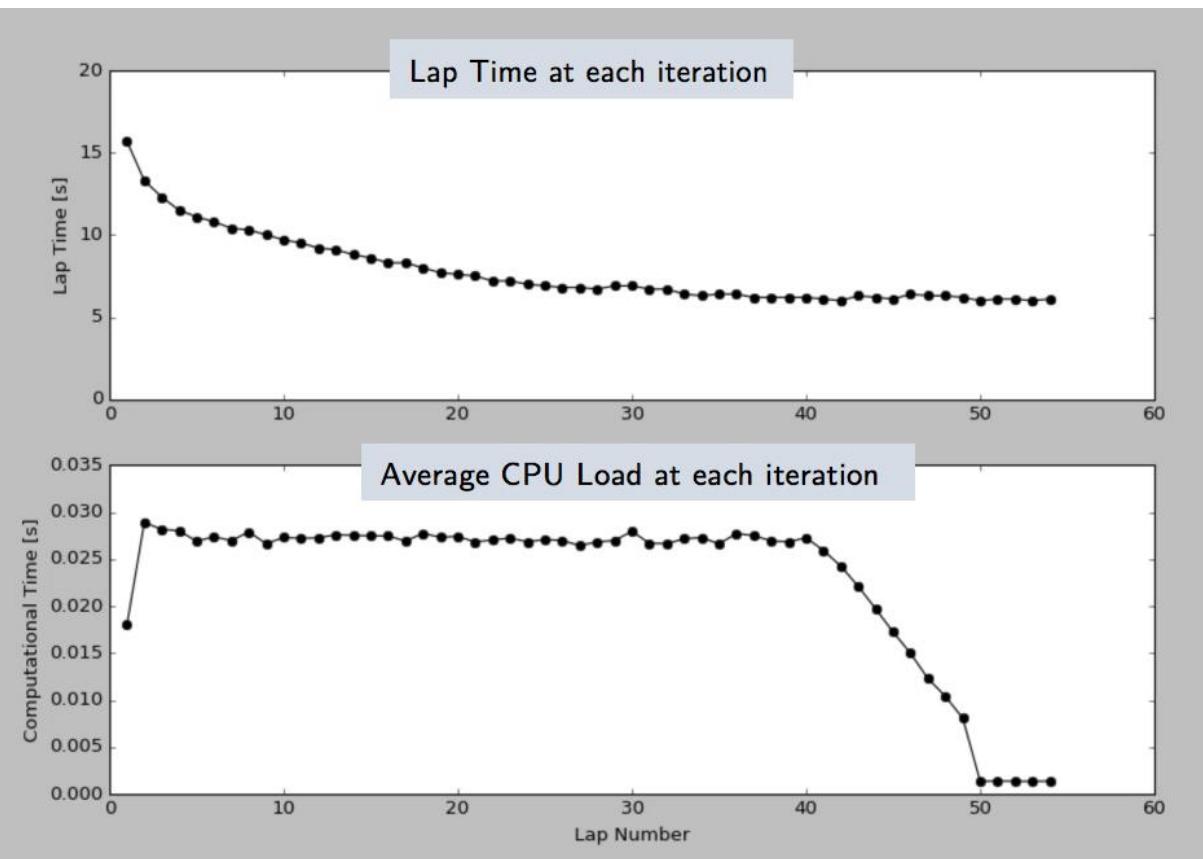
$$[\lambda_0^{0,*}, \dots, \lambda_i^{j,*}] = \arg \min_{\lambda_i^j \in [0,1]} \quad \sum_i \sum_j J_i^j \lambda_i^j$$

s.t

$$\sum_i \sum_j x_i^j \lambda_i^j = x(t),$$
$$\sum_i \sum_j \lambda_i^j = 1$$



Do you need to Predict at Convergence? No



Value Function Approximation

$$[\lambda_0^{0,*}, \dots, \lambda_i^{j,*}] = \arg \min_{\lambda_i^j \in [0,1]} \sum_i \sum_j J_i^j \lambda_i^j$$

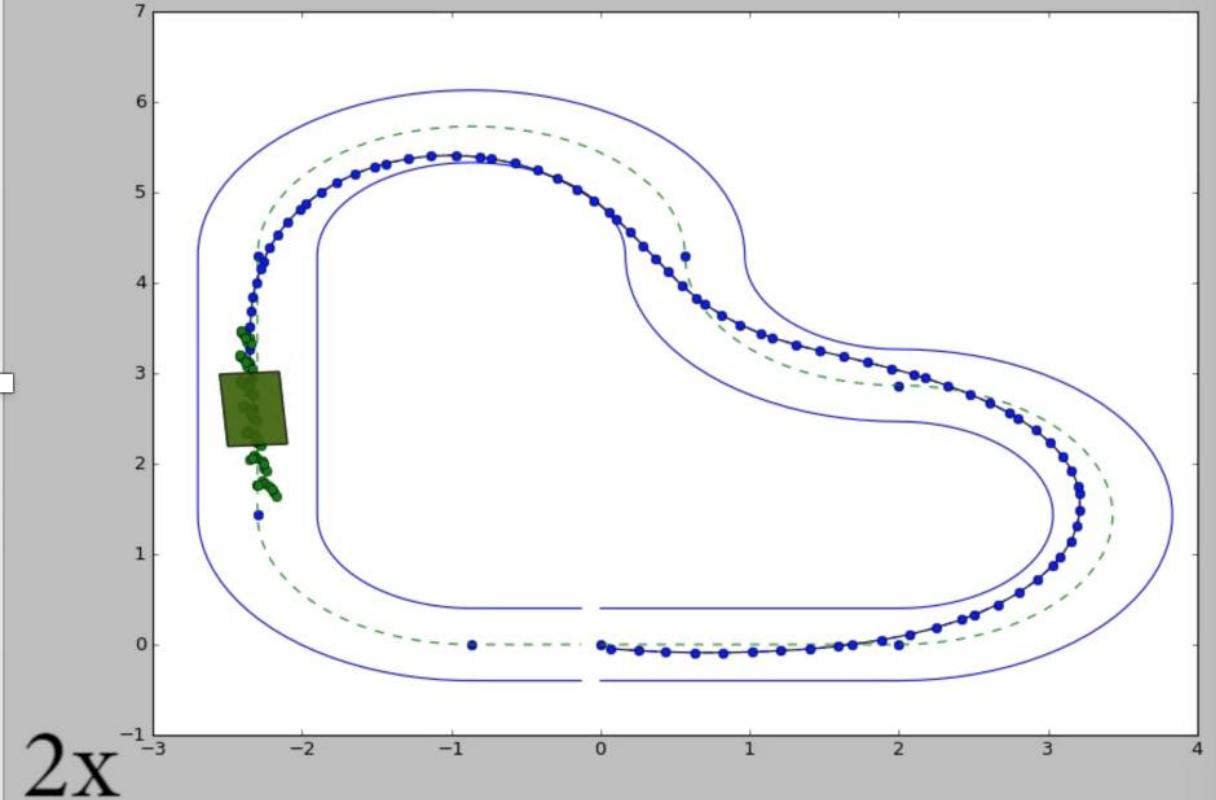
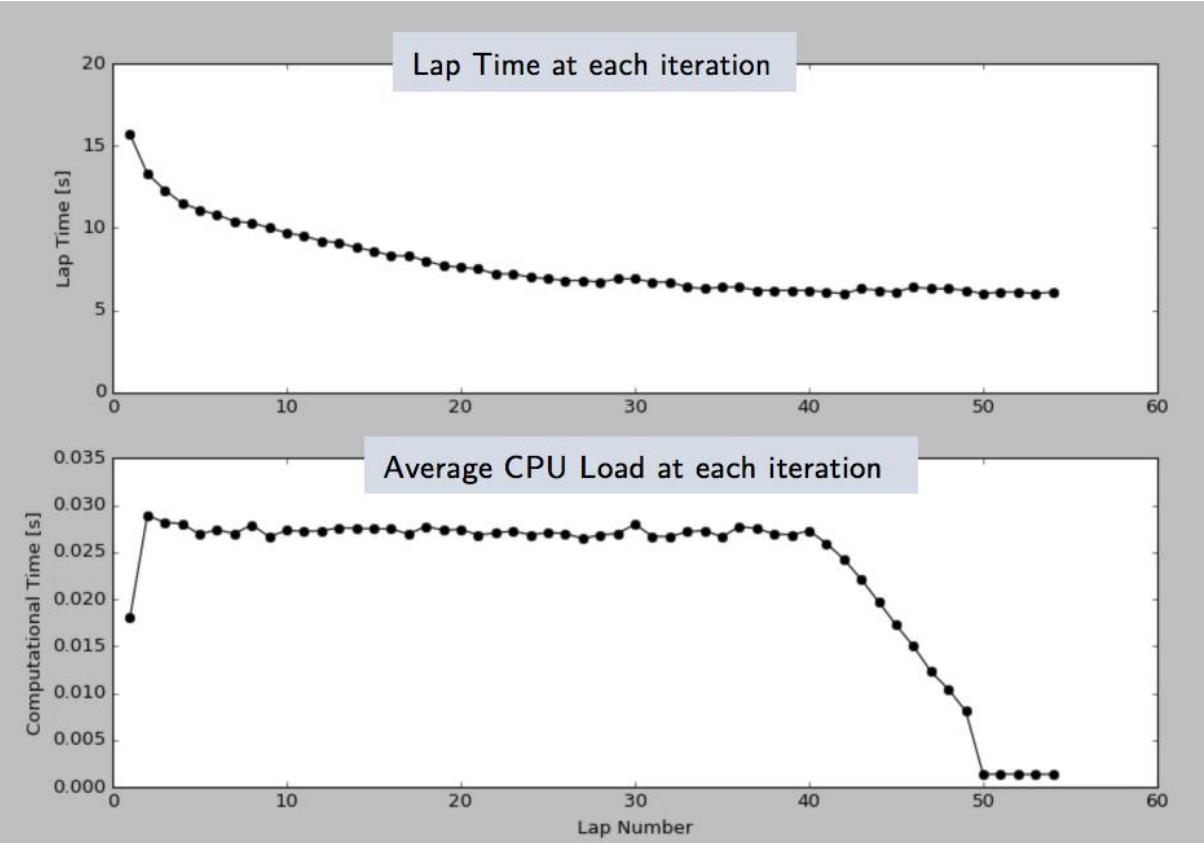
s.t

$$\sum_i \sum_j x_i^j \lambda_i^j = x(t),$$
$$\sum_i \sum_j \lambda_i^j = 1$$

Control Policy

$$\pi(x(t)) = \sum_i \sum_j u_i^j \lambda_i^{j,*}$$

Do you need to Predict at Convergence? No



Value Function Approximation

$$[\lambda_0^{0,*}, \dots, \lambda_i^{j,*}] = \arg \min_{\lambda_i^j \in [0,1]} \sum_i \sum_j J_i^j \lambda_i^j$$

s.t

$$\sum_i \sum_j x_i^j \lambda_i^j = x(t),$$
$$\sum_i \sum_j \lambda_i^j = 1$$

Control Policy

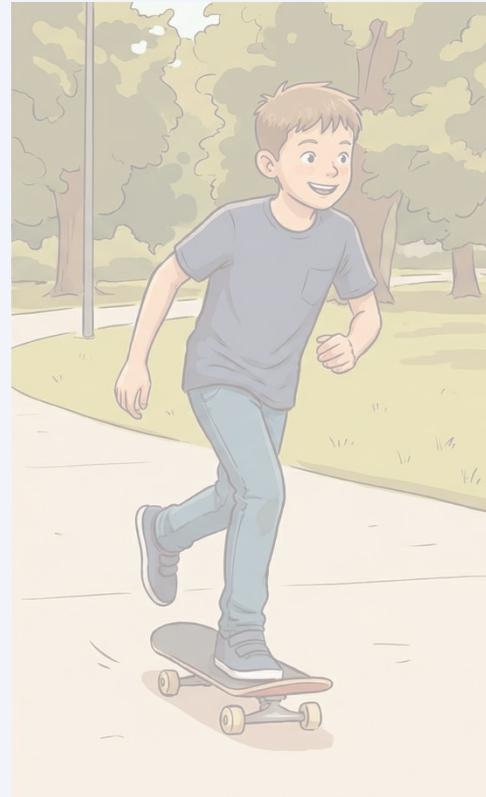
Stored Data

$$\pi(x(t)) = \sum_i \sum_j u_i^j \lambda_i^{j,*}$$

The three phases of learning

Skill acquisition

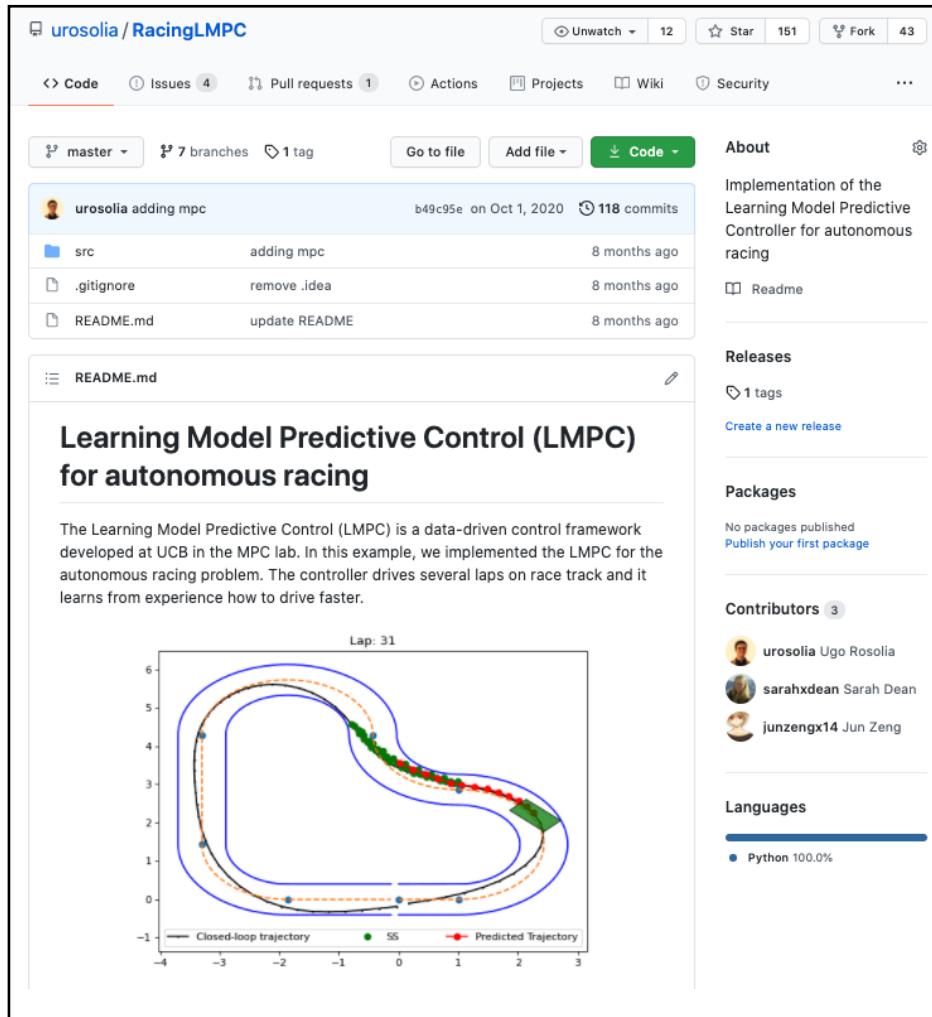
Skill improvement



Skill automation

Thanks! Questions?

Code available online



urosolia / **RacingLMPC**

Code Issues 4 Pull requests 1 Actions Projects Wiki Security

master 7 branches 1 tag Go to file Add file Code

urosolia adding mpc b49c95e on Oct 1, 2020 118 commits

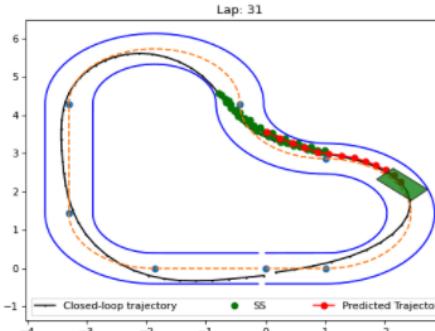
src adding mpc 8 months ago
.gitignore remove .idea 8 months ago
README.md update README 8 months ago

README.md

Learning Model Predictive Control (LMPC) for autonomous racing

The Learning Model Predictive Control (LMPC) is a data-driven control framework developed at UCB in the MPC lab. In this example, we implemented the LMPC for the autonomous racing problem. The controller drives several laps on race track and it learns from experience how to drive faster.

Lap: 31



Closed-loop trajectory
SS
Predicted Trajectory

About

Implementation of the Learning Model Predictive Controller for autonomous racing

Readme

Releases

1 tags

Create a new release

Packages

No packages published

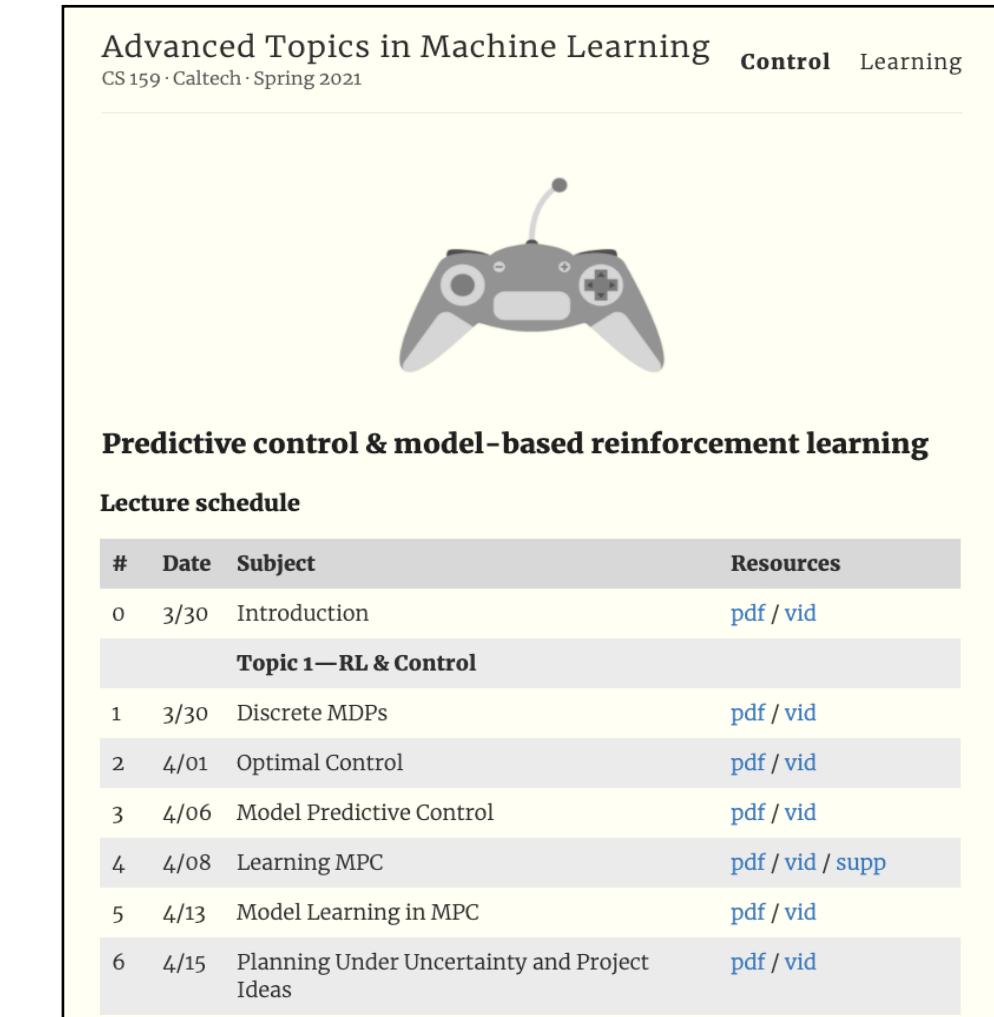
Contributors 3

urosolia Ugo Rosolia
sarahxdean Sarah Dean
junzengx14 Jun Zeng

Languages

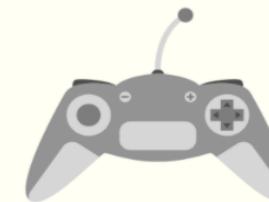
Python 100.0%

Course material online



Advanced Topics in Machine Learning Control Learning

CS 159 · Caltech · Spring 2021



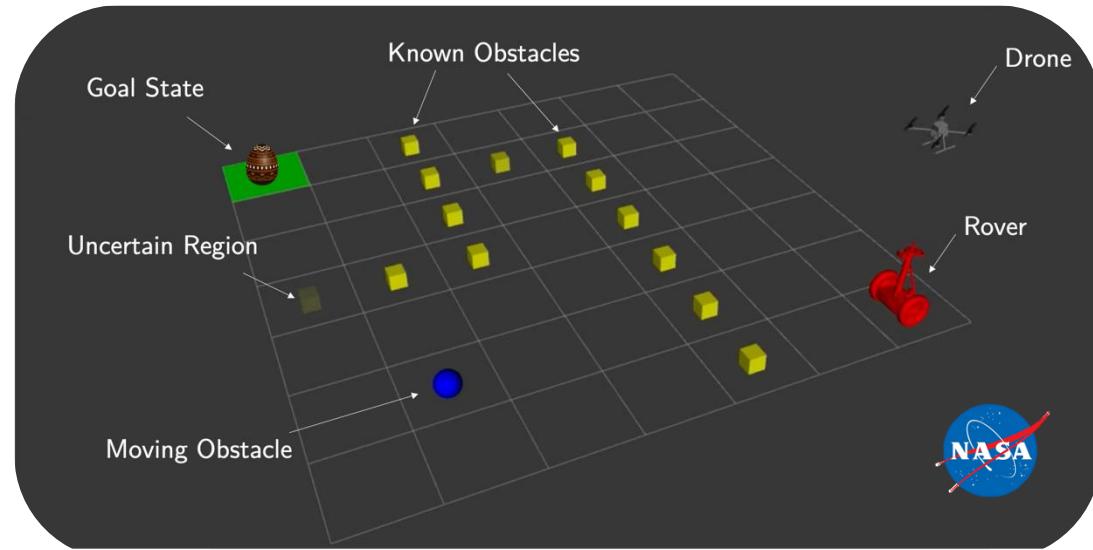
Predictive control & model-based reinforcement learning

Lecture schedule

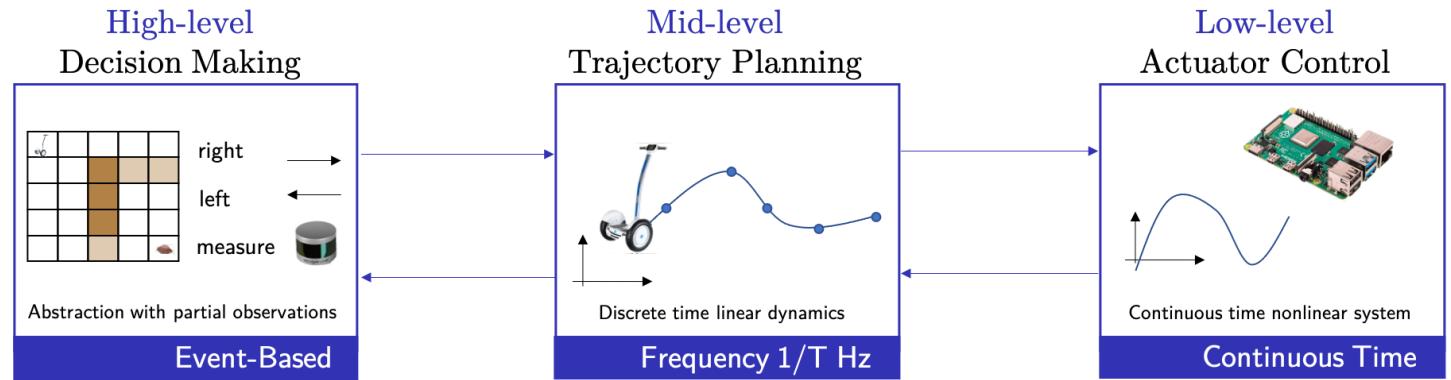
#	Date	Subject	Resources
0	3/30	Introduction	pdf / vid
Topic 1—RL & Control			
1	3/30	Discrete MDPs	pdf / vid
2	4/01	Optimal Control	pdf / vid
3	4/06	Model Predictive Control	pdf / vid
4	4/08	Learning MPC	pdf / vid / supp
5	4/13	Model Learning in MPC	pdf / vid
6	4/15	Planning Under Uncertainty and Project Ideas	pdf / vid

What is next?

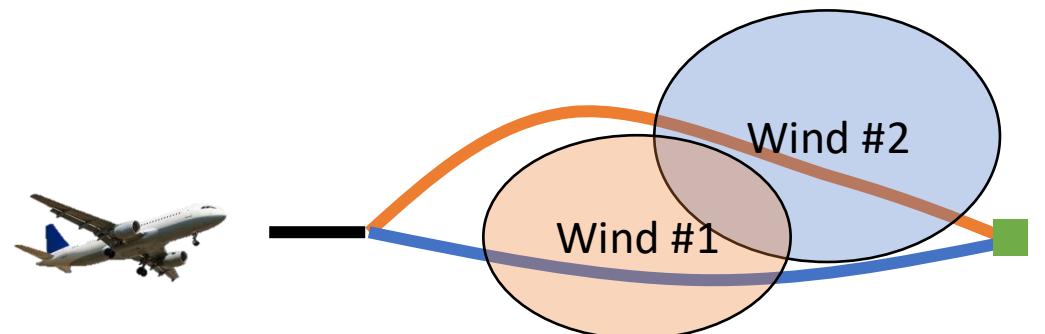
- ▶ Partial Observability



- ▶ Multi-agent systems



- ▶ Hierarchy + Learning



- ▶ Optimize over strategies, not trajectories

System ID in Autonomous Racing

- ▶ Nonlinear Dynamical System,

$$\begin{aligned}\ddot{x} &= \dot{y}\dot{\psi} + \frac{1}{m} \sum_i F_{x_i} \\ \ddot{y} &= -\dot{x}\dot{\psi} + \frac{1}{m} \sum_i F_{y_i} \\ \ddot{\psi} &= \frac{1}{I_z} (a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}})) \\ \dot{X} &= \dot{x} \cos \psi - \dot{y} \sin \psi, \quad \dot{Y} = \dot{x} \sin \psi + \dot{y} \cos \psi\end{aligned}$$

System ID in Autonomous Racing

- Nonlinear Dynamical System,

$$\ddot{x} = \dot{y}\dot{\psi} + \frac{1}{m} \sum_i F_{x_i}$$

$$\ddot{y} = -\dot{x}\dot{\psi} + \frac{1}{m} \sum_i F_{y_i}$$

$$\ddot{\psi} = \frac{1}{I_z} (a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}}))$$

$$\dot{X} = \dot{x} \cos \psi - \dot{y} \sin \psi, \quad \dot{Y} = \dot{x} \sin \psi + \dot{y} \cos \psi$$

Kinematic Equations

System ID in Autonomous Racing

- ▶ Nonlinear Dynamical System,

$$\begin{aligned}\ddot{x} &= \dot{y}\dot{\psi} + \frac{1}{m} \sum_i F_{x_i} \\ \ddot{y} &= -\dot{x}\dot{\psi} + \frac{1}{m} \sum_i F_{y_i} \\ \ddot{\psi} &= \frac{1}{I_z} (a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}})) \\ \dot{X} &= \dot{x} \cos \psi - \dot{y} \sin \psi, \quad \dot{Y} = \dot{x} \sin \psi + \dot{y} \cos \psi\end{aligned}$$

Kinematic Equations

- ▶ Identifying the Dynamical System

$$x_{k+1|t}^j = \begin{bmatrix} \dot{x}_{k+1|t} \\ \dot{y}_{k+1|t} \\ \ddot{\psi} \\ \psi_{k+1|t} \\ X_{k+1|t} \\ Y_{k+1|t} \end{bmatrix} = \begin{bmatrix} \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \end{bmatrix} x_{k|t}^j + \begin{bmatrix} \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \end{bmatrix} \begin{bmatrix} u_{k|t}^j \\ 1 \end{bmatrix}$$

Linearization around predicted trajectory

System ID in Autonomous Racing

- ▶ Nonlinear Dynamical System,

$$\begin{aligned}\ddot{x} &= \dot{y}\dot{\psi} + \frac{1}{m} \sum_i F_{x_i} \\ \ddot{y} &= -\dot{x}\dot{\psi} + \frac{1}{m} \sum_i F_{y_i} \\ \ddot{\psi} &= \frac{1}{I_z} (a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}})) \\ \dot{X} &= \dot{x} \cos \psi - \dot{y} \sin \psi, \quad \dot{Y} = \dot{x} \sin \psi + \dot{y} \cos \psi\end{aligned}$$

Dynamic Equations

Kinematic Equations

- ▶ Identifying the Dynamical System

$$x_{k+1|t}^j = \begin{bmatrix} \dot{x}_{k+1|t} \\ \dot{y}_{k+1|t} \\ \ddot{\psi} \\ \psi_{k+1|t} \\ X_{k+1|t} \\ Y_{k+1|t} \end{bmatrix} = \begin{bmatrix} \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \end{bmatrix} x_{k|t}^j + \begin{bmatrix} \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \end{bmatrix} \begin{bmatrix} u_{k|t}^j \\ 1 \end{bmatrix}$$

Linearization around predicted trajectory

System ID in Autonomous Racing

- ▶ Nonlinear Dynamical System,

$$\begin{aligned}\ddot{x} &= \dot{y}\dot{\psi} + \frac{1}{m} \sum_i F_{x_i} \\ \ddot{y} &= -\dot{x}\dot{\psi} + \frac{1}{m} \sum_i F_{y_i} \\ \ddot{\psi} &= \frac{1}{I_z} (a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}})) \\ \dot{X} &= \dot{x} \cos \psi - \dot{y} \sin \psi, \quad \dot{Y} = \dot{x} \sin \psi + \dot{y} \cos \psi\end{aligned}$$

Dynamic Equations

Kinematic Equations

- ▶ Identifying the Dynamical System

Local Linear Regression

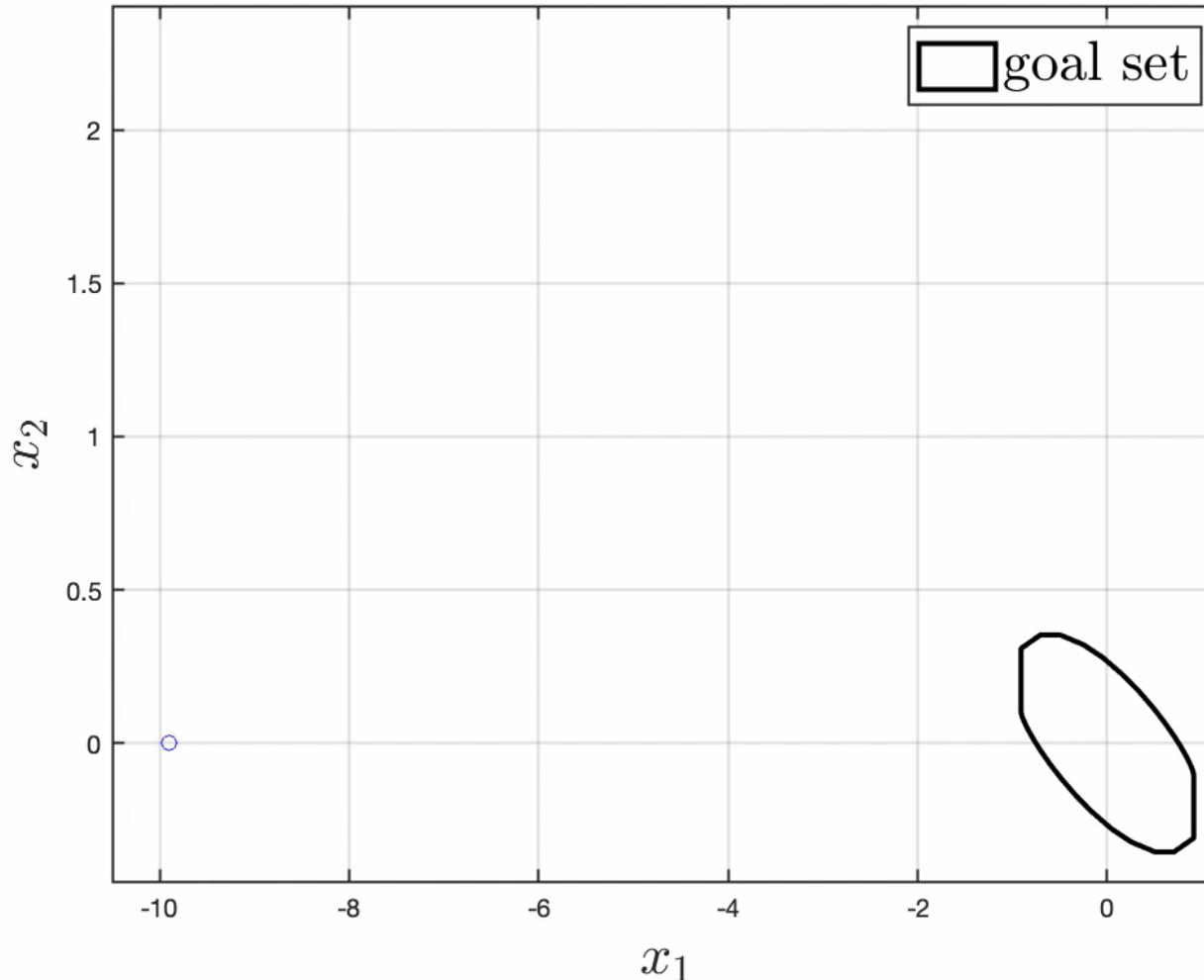
$$x_{k+1|t}^j = \begin{bmatrix} \dot{x}_{k+1|t} \\ \dot{y}_{k+1|t} \\ \ddot{\psi} \\ \psi_{k+1|t} \\ X_{k+1|t} \\ Y_{k+1|t} \end{bmatrix} = \left[\begin{array}{c} \text{argmin}_{\Lambda_y} \sum_{i,s} K(x_{k|t}^j - x_s^i) \|\Lambda_y \begin{bmatrix} x_s^i \\ u_s^i \\ 1 \end{bmatrix} - y_{s+1}^i\|, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \hline \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \end{array} \right] x_{k|t}^j + \left[\begin{array}{c} \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \\ \text{Linearized Kinematics} \end{array} \right] \begin{bmatrix} u_{k|t}^j \\ 1 \end{bmatrix}$$

Linearization around predicted trajectory

Safe Sets and Value Functions Estimation via Sampling

Safe Sets and Value Functions Estimation via Sampling

- Controller #1
- Controller #2



- ▶ Collect several trajectories with the same controller
- ▶ **Safe sets** computed as before using multiple trajectories
- ▶ **Value functions** estimate either the mean or worst-case cost
- ▶ All statement hold with some probability that is proportional to the amount of data

Comparison with Approximate DP (aka RL)

- ▶ Some references:
 - ❖ Bertsekas paper connecting MPC and ADP [1], books on RL and OC [2,3]
 - ❖ Lewis and Vrabie survey [4]
 - ❖ Recht survey [5]
- ▶ Learning MPC highlights
 - ❖ **Continuous** state and action formulation
 - ❖ Constraints satisfaction
 - ❖ **V-function constructed locally** based on cost/model driven exploration
 - ❖ V-function at stored state is “exact” and **upperbounds** at intermediate points

[1] D. Bertsekas, “Dynamic programming and suboptimal control: A survey from ADP to MPC.” European Journal of Control 11.4-5 (2005)

[2] D. Bertsekas, “Reinforcement learning and optimal control.” Athena Scientific, 2019.

[3] D. Bertsekas, “Distributed Reinforcement Learning” http://web.mit.edu/dimitrib/www/RL_2_Rollout_&_PI.pdf

[4] F. Lewis, Frank, and D. Vrabie. "Reinforcement learning and adaptive dynamic programming for feedback control." IEEE circuits and systems magazine 9.3 (2009)

[5] R. Benjamin. "A tour of reinforcement learning: The view from continuous control." Annual Review of Control, Robotics, and Autonomous Systems 2 (2019)