Learning Model Predictive Control for Iterative Tasks
Theory and Applications

Ugo Rosolia
Principal Research Scientist @ Lyric.tech

Work (mostly) done at UC Berkeley and Caltech

December 18th, 2025

Classic Approaches VS Al-based Strategies

Classic Approaches VS Al-based Strategies

Problem/Business
knowledge

Data/Compute power

Classic Approaches VS Al-based Strategies

Problem/Business
knowledge

Al-based method

Alpha GO
el |

Waymo'’s Perception Module

s "

g0 |

v

Data/Compute power

Classic Approaches VS Al-based Strategies

Problem/Business
knowledge

Control methods

Stanford Dynamic Design Lab

Al-based method

Waymo'’s Perception Module

- B

v

Data/Compute power

Classic Approaches VS Al-based Strategies

Control methods

Stanford Dynamic Design Lab

Problem/Business
knowledge

— ——
— e —
- m—
_—
-
-
-~
~ ~
~

Al-based method

Alpha GO

Waymo'’s Perception Module

- B

v

Data/Compute power

Classic Approaches VS Al-based Strategies

Control methods

Stanford Dynamic Design Lab

Problem/Business
knowledge

Al-based method

Waymo'’s Perception Module

- B

N\
N\
N\
AN

Our goal! Data/Compute power

v

Success Stories from Al
Alpha GO
.‘Jr'{rr |

g7 -
A

- -
(

> ‘ 4§
~. 2 \ R 7 (
.ALPHAGO 5 o e Y :
00:08:3 9 ; ¢ LEE SEDOL
: : (L X3 « 00:00:27
v 2

BB |C NS

GOAL 1 ?

Success Stories from Control Theory

Boston Dynamics

Stanford Dynamic Design Lab

Standard Control Pipeline

(Trajectory Tracking \

(System Identification \

~

(Optimal Trajectory \
KK'I: Con:-clitions Bellman Recu Nyquist plot Lyapunov Function Pajecka Formula Bicycle Model
e e o - =
e oo, N
e e e
e e @ T e
\ Optimization Dynamic Programming/ \Frequency Domain \ Tire Dynamics Vehicle Dyn mics/

Classic Approaches VS Al-based Strategies

Control methods

Stanford Dynamic Design Lab

Problem/Business
knowledge

Al-based method

Waymo'’s Perception Module

- B

N\
N\
N\
AN

Our goal! Data/Compute power

v

Today’s Example

Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Lessons from Classical Approaches

Predicted Cost

Safe Region

» Predicted trajectory given by Prediction Model
» Safe region estimated by the Safe Set
» Predicted cost estimated by

Three key components to learn

Prediction Model

Safe Set

Three key components to learn

Prediction Model
Model-based RL

Safe Set

Three key components to learn

Prediction Model Value Function

Model-based RL Model-free RL

Safe Set

Three key components to learn

Prediction Model Value Function

Model-based RL Model-free RL

Safety-critical Control

Safe Set

Three key components to learn

Prediction Model
Model-based RL

Data Efficient Learning!

Safety-critical Control

Safe Set

Iterative Tasks

Iterative data collection and policy update

Iterative Tasks — Drone Example

d GoaI‘Height

Iterative Tasks — Drone Example

. — p| _ |position
~ |v| |velocity

GoaI‘Height

-

Iterative Tasks — Drone Example

» State

“p «— |P| _ position
ﬁ@ ~ |v| | velocity

» Input u = a = acceleration

g GoaI‘Height

Iterative Tasks — Drone Example

» State

“p ﬁ __|p| _ |position
54& X = [v] - {velocity]

» Input u = a = acceleration

» Dynamics

=l 3

m ? :
Goal Height

Iterative Tasks — Drone Example

» State

“p ﬁ __|p| _ |position
54& X = [v] - {velocity]

» Input u = a = acceleration

» Dynamics

=l 3

» Cost x,;r Qxx + u,;r Ruy

GoaI‘Height

S e
.

Iterative Tasks — Drone Example

» State

p | 4% ‘ __|p| _ |position
/Q°Q\ = [v] - {velocity]

ol de

» Input u = a = acceleration

» Dynamics

=l 3

gy =
Goal Height
» Cost x,;r Qxx + u,;r Ruy
» Constraints
B 57] [5°
S5 | < |vi| < |5

05| |ax 0.5

Iterative Tasks — Drone Example

» State
“p «— |P| = position
~ |v| |velocity
» Input u = a = acceleration
» Dynamics
=l
ey 5 Vik+1 0 1] [wk] [a
Goal Height
» Cost x,;r Qxx + u,;r Ruy
» Constraints
-5 Pk 5 |
h S5 | < |vi| < |5

—0.5 a 0.5)

Limited actuation!

Iterative Tasks — Drone Example
p

Starting State

Iterative Tasks — Drone Example

Starting State

p

Goal State

/

Iterative Tasks — Drone Example

p
Starting State

Goal State

/

» [teration = one execution of the task

Iterative Tasks — Drone Example
p

Starting State
};_\ \/ First Iteration
-

b _—
Goal State
/

» [teration = one execution of the task

Iterative Tasks — Drone Example
p

Starting State
X

F'S:A First Iteration

b _—
Goal State
/

/

Second Iteration

» [teration = one execution of the task

Iterative Tasks — Drone Example

p

Starting State
X

:—q,?\y_ / First Iteration
Goal State

/

/

Second Iteration

» [teration = one execution of the task

» Objective: Drive the drone optimally from the starting state to the goal state

v

Learning Model Predictive Control (LMPC)

Exploit historical data

Learning Model Predictive Control (LMPC) — Key ldea

Learning Model Predictive Control (LMPC) — Key Idea

p

Learning Model Predictive Control (LMPC) — Key Idea

p

Current position

Algorithm steps:
» Get current state

Learning Model Predictive Control (LMPC) — Key Idea

Current position

g
SN

v

Algorithm steps:
» Get current state
» Plan a trajectory

Learning Model Predictive Control (LMPC) — Key Idea

Current position

g
SN

v

Algorithm steps:
» Get current state
» Plan a trajectory

Learning Model Predictive Control (LMPC) — Key Idea

Current position

v

Algorithm steps:
» Get current state
» Plan a trajectory
» Execute the action

Learning Model Predictive Control (LMPC) — Key Idea

p

New Current position

Algorithm steps:
» Get current state
» Plan a trajectory
» Execute the action

Learning Model Predictive Control (LMPC) — Key Idea

p

New Current position
ey - A /

R

v

Safe Set

Algorithm steps:
» Get current state
» Plan a trajectory
» Execute the action

Learning the Safe Set

Iteration 1

Assumption: A feasible trajectory is known

Starting State

5

Goal State

v

v

Iteration 1

Assumption: A feasible trajectory is known

Starting State

e
K

Goal State

v

-

First Iteration

v

Iteration 1

Assumption: A feasible trajectory is known p

Starting State
First Iteration

Goal State

v

Definition: Sampled Safe Set
SS' = {Stored Data}

Iteration 1

Assumption: A feasible trajectory is known p

Starting State
o /

-y First lteration
TN
Ny

Goal State

v

Definition: Sampled Safe Set
SS' = {Stored Data}

Set of states from which
the task can be completed!

Iteration 2, Step O

Use SS! asterminal

Starting State

TN
N

Goal State

v

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1

v

Iteration 2, Step O
Use SS! asterminal

Starting State

Goal State

v

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 1
Use SS! asterminal

Starting State

Goal State

v

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 1
Use SS! asterminal

Starting State

Goal State

v

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 2
Use SS! asterminal

Starting State
¥

Goal State

v

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 2
Use SS! asterminal

Starting State
¥

Goal State

v

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

—
A
~
~

v

Iteration 2, Step 3
Use SS! asterminal

Starting State
¥

Goal State

v

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

—
A
~
~

v

Iteration 2, Step 3
Use SS! asterminal

Starting State
¥

Goal State

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 4
Use SS' asterminal p

Starting State
¥

Goal State

v

|-

First Iteration

£
~
~

~
~
~
~
~

\ii
\
\
\
\ @
\
/i}E
-
-
-

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 4
Use SS! asterminal

Starting State
¥

Goal State

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 5
Use SS! asterminal

Starting State
¥

Goal State

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 5
Use SS' asterminal p

Starting State
¥

Goal State

v

|-

First Iteration

4\

= =

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 5
Use SS! asterminal

Starting State
¥

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

Goal State

First Iteration

v

Iteration 2, Step 5
Use SS! asterminal

Starting State
¥

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

Goal State

First Iteration

v

Iteration 2, Step 5

Use SS! asterminal

Starting State
/{.._g:; >\/

R g

Goal State

v

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 2, Step 5

Use SS! asterminal

Starting State
/{.._g:; >\/

R g

Goal State

v

First Iteration

@ Sampled Safe Set at iteration O
@ Drone state at iteration 1
i\(Optimal planned trajectory

v

Iteration 3

Starting State

(?ff»?‘?:/ First Iteration

Definition: Sampled Safe Set
SS7 = {Stored Data at all iterations}

Iteration 3

rting State

First Iteration

Definition: Sampled Safe Set

Set of states from which
the task can be completed!

SS7 = {Stored Data at all iterations}

Iteration 3

Starting State

First Iteration

Goal State

v

N
J

Iteration 3

Starting State

First Iteration

-

Goal State

v

Definition: Convex Safe Set

CS? = Conv({Stored Data at all iterations})

Iteration 3

Starting State

First Iteration

-

Goal State

v

Definition: Convex Safe Set

Set of states from which
the task can be completed!

CS? = Conv({Stored Data at all iterations})

Learning Model Predictive Control (LMPC) — Key Idea

New Current position
ey - A /

. B e v
g s
L E
%—— < 2
7 1

v

Safe Set

Algorithm steps:
» Get current state
» Plan a trajectory
» Execute the action

Learning Model Predictive Control (LMPC) — Key Idea

New Current position

Sy /

R

v

Algorithm steps:
» Get current state
» Plan a trajectory
» Execute the action

Value Function Estimation

rting State

First Iteration

Value Function Estimation

rting State
First Iteration

Goal State

'

ri = state at time k of iteration i

Value Function Estimation

Starting State

Goal State

'

First Iteration

ri = state at time k of iteration i

J; = cumulative cost from xj,

v

Value Function Estimation

Starting State

4
oy

Goal State

v

First Iteration

Value Function

V7 () = Interpolation of the set of data {{(Ji, =)} _o}5

ri = state at time k of iteration i

J;, = cumulative cost from zj,

v

LMPC Summary

LMPC Summary

At each time t of iteration j, solve

New Current position

LMPC Summary

At each time t of iteration j, solve
N-1

J(z(t)) = min Z (a:,IQa:k + u,;rRuk) + VI zy)
k=0

s.t. Trai1 = f(xk, uk),
rg = x(t),
xp €X, up €U,
ry € 8§
Vk e [0,--- ,N —1]

LMPC Summary

At each time t of iteration j, solve
N-1

J(z(t)) = min Z (x,IQajk + u,;rRuk) + VI zy)

UQ gy UN—1
k=0

s.t. Trai1 = f(xk, uk),
o = x(t),
xp €X, up €U,
zn € 8§
Vke[0,--- , N — 1]

Guarantees for constrained (linear) systems [1,2]

The properties of the (convex) safe set and (convex) V-function allows us to guarantee:

» Safety: constraint satisfaction at iteration j — satisfaction at iteration j+1

» Non-decreasing Performance: closed-loop cost at iteration j >= closed-loop cost at iteration j+1
» Performance Improvement: closed-loop cost strictly deceasing at each iteration (LICQ required)
» (Global) optimality: steady state trajectory is optimal for the original problem (LICQ required)

[1] U. Rosolia, F. Borrelli. “Learning model predictive control for iterative tasks. a data-driven control framework.” IEEE Transactions on Automatic Control (2018).
[2] U. Rosolia, F. Borrelli. “Learning model predictive control for iterative tasks: A computationally efficient approach for linear system.” IFAC-PapersOnLine (2017)
[3] U.Rosolia, Y. Lian, E. Maddalena, G. Ferrari-Trecate, and C. N. Jones. "On the Optimality and Convergence Properties of the Iterative Learning Model Predictive Controller." IEEE Transactions on Automatic Control (2022).

Autonomous Racing

Goal: Minimize lap time '

Requirement: Guarantee safety

Three key components to learn

Prediction Model Value Function

Model-based RL Model-free RL

Safety-critical Control

Safe Set

Three key components to learn

Prediction Model
Model-based RL

Hyundai California Proving Ground

" Hyundai California Proving
- Grounds, California City

Hyundai California Proving Ground

Starting Line

Finish Line

Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Lap Time

110 T T T T T T T T
e—e Lap Time [s]
100
%0 The control policy is
constructed using ~1k
80 data points (last 2 laps)
70
60 The control action is
computed using ~100 data
50 points
40 h
3[' | | | | | | | |

Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Velocity Profile at Convergence (Curve 1)

y [m]

=500

=510}

»
_5201L Test Starts: LMPC accelerat

~530} 5y

_,
£
S,

/5 Breaking before entering the curve

~540
~550
~560 | \§
~570 |

-580 |

~470 -460 -450 -440 -430 -420 -410 -400 -390

X [m]

€s

19.0

18.5

18.0

17.5

17.0

16.5

16.0

15.5

s/w paads

Velocity Profile at Convergence (Chicane)

~480 |

-500

y [m]

~540 |

-560

—580

—520 |

Breaking

\

—-380

-360 =340 -320 =300 -280 -260 =240
X [m]

19.0

18.5

418.0

17.5

17.0

+416.5

16.0

15.5

s/w paadg

Learning Model Predictictive Control
for Autonomous Racing

The key components

» Predicted trajectory given by prediction model
» Predicted cost estimated by
» Safe region estimated by the safe set

Prediction Model
Model-based RL

Data Efficient Learning!

Safety-critical Control

Safe Set

Terminal Components via DNN AUTOLAE)

Brijen

Knot-Tying Arm 1 Trajectory Demo
< Learned

——
—

T

"‘-.-1.___
e

-0.0 ‘e

.

4

vy v v v v

Safe Set constructed using non-parametric estimation
Model ensemble and input sampling strategies for MPC
Knot tying task on real surgical robot with inefficient demos (red)
Constraints: stay within 1 cm tube of reference trajectory
SAVED successfully smooths + optimizes demos

“Safety Augmented Value Estimation from Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks.”, B. Thananjeyan*, A. Balakrishna*, U. Rosolia, F. Li, R.
McAllister, J. E. Gonzalez, S. Levine, F. Borrelli, K. Goldberg IEEE Robotics and Automation Letters (RA-L) (2020)

*=equal contribution

—eo— R1 -+ R3
--=- R2 — Mission

-

—
~

o
@

-—
kS o o
b ————e——

>
=
a
©
Do
O
—
Q.o

—_—

High-lhevel timé [s] ‘

i High-level probability of A |
. ikl (v
completing the mission b} |

4 A A .

Caltech

The key components

» Predicted trajectory given by prediction model
» Predicted cost estimated by
» Safe region estimated by the safe set

Prediction Model
Model-based RL

Data Efficient Learning!

Safety-critical Control

Safe Set

The three phases of learning

The three phases of learning

Skill improvement

The three phases of learning

Skill acquisition

Skill improvement

The three phases of learning

Skill acquisition

Skill improvement

Skill automation
= |?‘ =)|
‘ ‘ | -

I Ty j% il

N

The three phases of learning

Skill improvement Skill automation

Do you need the safe set? — Yes
LMPC without Invariant Set

The controller extrapolates the V-function on the Vx dimension

Do you need to Predict to Learn? Yes

When the LMPC horizon is N = 1 the controller
» solves the Bellman equation using the V-function as value function approximation
» does not explore the state space as it cannot plan outside the safe set

% ' : ' ' ' : 20 Lap Time at each iteration
6| At
=
]
E 10}
sl =
o
3
5|
a1
o
0 10 20 30 40
3
0.035 . .
Average CPU Load at each iteration
2| = 0030t
U 0.025
E
'_
1l = 0020
c
g
E 0.015
=
ol g 0010
=]
Y 0.005 |
-1 . - - - - - 0.000 - - - -
=3 =2 =1 4] 1 7 3 4 [4] 10 20 30 40

Lap Number

The three phases of learning

Skill improvement Skill automation

The three phases of learning

Skill acquisition

Skill improvement

Skill automation
= |?‘ =)|
‘ ‘ | -

I Ty j% il

N

The three phases of learning

Skill acquisition

Skill improvement

Skill automation
[[IILS g nl's
utﬂmmmmw i S wmnnm .

Do you need to Predict at Convergence? No

Lap Time at each iteration

Average CPU Load at each iteration

k

Do you need to Predict at Convergence? No

¥
7 20 Lap Time at each iteration
6 15
0
£
10
5 E
o
k]
o
4
0
, 0 10 20 30 a0
:l 0.035 . .
Average CPU Load at each iteration
2 = 0.030
g 0.025
E
1 = 0.020
c
S
£ 0015
2
0 g 0010
o
Y 0.005
—1—3 ;2 2 § 0 1 2 3 B 0.0000 10 20 30 40
x Lap Number

Value Function Approximation

A", A = arg Minygieoq] 2ui Do JIN
ot S5, EA = (),
i Zj)‘g =1

Do you need to Predict at Convergence? No

s

7 20 Lap Time at each iteration

&

Lap Time [s]

0 10 20 30 40 50 60

Average CPU Load at each iteration
0.030

Computational Time [s]

2 X—1_3 ;2 2 § 0 1 2 3 B 0.0000 10 20 - ::mber 40 50 60
Value Function Approximation Control Policy
O)* j’* S 3 . .7 .7
Ao s AT = arg miny; g g D2 i N

st DD, x‘Z)\‘Z = x(t), 7T(£C(t)) _ Z@ Z]‘ ug)\g,*
Zz’ Zj)‘g =1

Do you need to Predict at Convergence? No

=
7 20 Lap Time at each iteration
6 15
5 Em
L]
o
4
00 10 20 30 40 50 60
,—_l 3
S Average CPU Load at each iteration

> = 0.030

E 0.025

E
1 = 0.020

'% 0.015
0 é 0.010

8 0.005

2 —1—3 ;2 2 § 0 1 2 3 B 0.0000 10 20 30 40 50 60
X Lap Number
Value Function Approximation Control Policy
O)* j’* S 3 . .7 .7
P‘O Yoty >‘7;] — arg mlnAge[o,l] Zz Zj Jz‘)‘2_ StOFEd Data

i\ J - = »
OSSN n(a(t) = 3, 5 @A
Zz’ Zj)‘g =1

The three phases of learning

Skill acquisition Skill improvement Skill automation

Code available online

B urosolia / RacingLMPC

<> Code (D) Issues 4 I Pull requests 1

¥ master ~ ¥ 7 branches O 11tag

3 urosolia adding mpe

W osrc adding mpe
.gitignore remove .idea

[README.md update README

‘= README.md

for autonomous racing

learns from experience how to drive faster.

Lap: 31

(¥) Actions

Go to file

& Unwatch - 12

[Projects [0 Wiki

b49c8Se on Oct 1, 2020 Y5 118 commits

8 months age
8 months ago

8 months ago

&

Learning Model Predictive Control (LMPC)

The Learning Model Predictive Control (LMPC) is a data-driven control framework
developed at UCB in the MPC lab. In this example, we implemented the LMPC for the
autonomous racing problem. The controller drives several laps on race track and it

-1 | = Closed-loap trajectory .

—8— Predicted Trajectary

-4 -3 -2 -1

1

2 3

¥r Star | 151 % Fork 43
I Security
About =1

Implementation of the
Learning Model Predictive
Controller for autonomous
racing

M Readme

Releases

O 11ags

Create a new release

Packages

Mo packages published
Publish your first package
Contributors 3

’ urosolia Ugo Rosolia
" sarahxdean Sarah Dean

< 14 Jun Z
junzengx14 Jun Zeng

Languages

® Python 100.0%

Thanks! Questions?

Course material online

3/30
4/01
4/06
4/08
4/13
4/15

Advanced Topics in Machine Learning ., ...,
CS159-Caltech - Spring 2021

Lecture schedule
Date Subject
0 3/30 Introduction

Topic 1—RL & Control
Discrete MDPs

Optimal Control

Model Predictive Control
Learning MPC

Model Learning in MPC

Planning Under Uncertainty and Project
Ideas

Learning

Predictive control & model-based reinforcement learning

Resources

pdf / vid

pdf [vid
pdf / vid
pdf / vid
pdf / vid / supp
pdf / vid

pdf / vid

What is next?

» Partial Observability

» Multi-agent systems

» Hierarchy + Learning

» Optimize over strategies, not trajectories

Known Obstacles
Goal State

Uncertain Region

Moving Obstacle

Mid-level Low-level

High-level
Trajectory Planning Actuator Control

Decision Making

right , > T
left D /
©
<« | measure
Discrete time linear dynamics

Frequency 1/T Hz

e

N

Continuous time nonlinear system

Continuous Time

Abstraction with partial observations

System ID in Autonomous Racing

» Nonlinear Dynamical System,
y :_:Uw—'_%Zszz
w. — %(Q(Fyl,z) o b(Fy2,.3) T C(_Fiﬁl,s T F$2,4)
X =axcosy—ysiny, Y =zsiny + ycosy

System ID in Autonomous Racing

» Nonlinear Dynamical System,

io= gty P

y :_:Uw—'_%Zszz

w. — Ii(a(F’yl,Q) R b(FyQ,.S) T C(_Fiﬂl,s T F$2,4)

X = T COSw — ySiIl 77D, Y = T sinw - y COSw Kinematic Equations

System ID in Autonomous Racing

» Nonlinear Dynamical System,
: 1
— zxw T m Zz Fyz'
— I_(a(F’yl,Q) R b(FyQ,.S) T C(_ 1.3 T F$2,4)
— COSw — ySiIl 77D, Y = T sinw - y COSw Kinematic Equations

>

5

y
Y
X

|dentifying the Dynamical System

Loyt —

Tyt
Y411t
¢k+1|t
Xkt1t

| Yiet)e |

Linearized Kinematics
Linearized Kinematics
Linearized Kinematics

J
Tpe T

J
Ui |t

Linearized Kinematics 1
Linearized Kinematics
Linearized Kinematics

Linearization around predicted trajectory

System ID in Autonomous Racing
» Nonlinear Dynamical System,
= —ip+ L3 F,

>

5

— Ii(a(Fyl,z) B b(Fy%,s) + C(_ *1,3 + F$2,4)

Dynamic Equations

y
Y
X

— T COS w — ySiIl 77D, Y = T sIn w - y COS w Kinematic Equations

|dentifying the Dynamical System

Loyt —

Tyt
Y411t
¢k+1|t
Xkt1t

| Yiet)e |

Linearized Kinematics
Linearized Kinematics
Linearized Kinematics

J
Tpe T

J
Ui |t

Linearized Kinematics 1
Linearized Kinematics
Linearized Kinematics

Linearization around predicted trajectory

System ID in Autonomous Racing

» Nonlinear Dynamical System,

>

5

Ii(a(F’yl,Q) R b(FyQ,.S) T C(_ 1.3 T F$2,4)

Dynamic Equations

y
Y
X

rcosy —ysiny, Y = xsiny + ycosy

Kinematic Equations

|dentifying the Dynamical System

Loyt —

Tyt
Y411t
¢k+1|t
Xkt1t

Local Linear Regression

argmin
Ay

K(azi,t - mg)HAy

1

Ls

{ué] — y2+1H,Vy S {l“ay,@b}
1

J

| Yiet)e |

Linearized Kinematics
Linearized Kinematics
Linearized Kinematics

Tpe T

Linearized Kinematics
Linearized Kinematics
Linearized Kinematics

Linearization around predicted trajectory

Safe Sets and Value Functions Estimation via Sampling

Safe Sets and Value Functions Estimation via Sampling

O Controller #1

» Collect several trajectories with the
O Controller #2

same controller

goal set
h _ » Safe sets computed as before using
|] multiple trajectories
& af ! > estimate either the
mean or worst-case cost
» All statement hold with some
T | probability that is proportional to the
| | | | | | amount of data

L1

U. Rosolia, and F. Borrelli. "Sample-based learning model predictive control for linear uncertain systems." In 2019 |IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019.
U. Rosolia, X. Zhang, and F. Borrelli. "Robust learning model predictive control for linear systems performing iterative tasks." IEEE Transactions on Automatic Control (2021).

Comparison with Approximate DP (aka RL)

» Some references:
<« Bertsekas paper connecting MPC and ADP [1], books on RL and OC [2,3]
<« Lewis and Vrabie survey [4]
< Recht survey [5]

» Learning MPC highlights
<« Continuous state and action formulation
« Constraints satisfaction
% V-function constructed locally based on cost/model driven exploration
<« V-function at stored state is “exact” and upperbounds at intermediate points

[1] D. Bertsekas, “Dynamic programming and suboptimal control: A survey from ADP to MPC.” European Journal of Control 11.4-5 (2005)

[2] D. Bertsekas, “Reinforcement learning and optimal control.” Athena Scientific, 2019.

[3] D. Bertsekas, “Distributed Reinforcement Learning” http://web.mit.edu/dimitrib/www/RL_2_Rollout_&_ Pl.pdf

[4] F. Lewis, Frank, and D. Vrabie. "Reinforcement learning and adaptive dynamic programming for feedback control." IEEE circuits and systems magazine 9.3 (2009)
[5] R. Benjamin. "A tour of reinforcement learning: The view from continuous control." Annual Review of Control, Robotics, and Autonomous Systems 2 (2019)

http://web.mit.edu/dimitrib/www/RL_2_Rollout_&_PI.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 25
	Slide 26: Iterative Tasks
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Learning Model Predictive Control (LMPC)
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118: Thanks! Questions?
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

