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Middle Mile Network Design
Consolidation Hub

1. Connectivity, i.e., buildings to connect.
2. Timing, I.e., trucks departure times.
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Middle Mile Network Design

Key decisions

1. Connectivity, i.e., buildings to connect.
2. Timing, I.e., trucks departure times.

Obijectives

1. Reduce cost.
2. Minimize carbon emissions.
3. Maximize delivery speed.
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Why considering speed?

Design the cheapest and fastest network for our customers
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Network Design: Connectivity
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Destination #2

min NetworkCost(p,y)
p,v

s.t. (p,y) € FeasibleNetwork
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Path vector variable

Trucks vector variable
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Network Design: Timing
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Network Design: Timing
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min NetworkCost(p,y) — Speed(z)
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min NetworkCost(p,y) — Speed(z)
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(a) Feasibility: We must consider granular non-convex operational constraints, e.g., site opening hours.
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Network Design: The joint problem

: min NetworkCost(p,y) — Speed(z) A
P.Y,z

s.t. (p,y) € FeasibleNetwork

z € FeasibleSchedule(p)
- J

Why is this problem hard to solve?

(a) Feasibility: We must consider granular non-convex operational constraints, e.g., site opening hours.

(b) Speed objective: Inventory at origins impacts the speed given by expensive fast connections.

(c) Scale: Billions of variables to model hourly decisions, e.g., when a truck should depart.
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Approximating the speed objective

Consider truck departure time combinations:
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Approximating the speed objective

Consider truck departure time combinations:

1 Origin#1 @ Morning

1 L2 Origin#1 @ Night 3 |Origin#1 @ Morning| 4, |Origin#1 @ Night
= g : = z° = 2" =
Origin#2 @ Morning| ’ ’ ’

Origin#2 @ Morning Origin#2 @ Night Origin#2 @ Night

Compute speed for each combination:
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Approximating the speed objective

Interpolation via parametric optimization:

S d
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Interpolation via parametric optimization: st

Speed(z

subject to Zoz z'=z
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Approximating the speed objective
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Approximating the speed objective
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Results on a randomly generated datasets

» Location of nodes generated at random (cost of operating a truck proportional to distance)
» Items stored in each warehouse randomly generated
» Assuming a 0.1 conversion factor from speed and cost
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Results on a randomly generated datasets

» Location of nodes generated at random (cost of operating a truck proportional to distance)
» Items stored in each warehouse randomly generated
» Assuming a 0.1 conversion factor from speed and cost

Algorithm 1: Unique Items Approximation
1 Inputs: kD, F;
ford € Ddo
Initialize Ag = (;
Sort by number of unique item the FCs that can offer 1-day delivery to DS d: . ) ..
Compute the set Z,; of all possible combinations of speed lane assignments for top x FCs; = Take all combination for top K origins

2
3
4
5
6 For all z};, € Z;, add the tuple (25, Us(z})) to the set A,;
7
8
9

Compute the speed lane assignments from (12) for remaining (ny — &) FCs;
For all 2 € Z4, add the tuple (25, Ua(z})) to the set Aa;
Return: Set of vectors and cost coefficients As ford € D.
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Results on a randomly generated datasets

Baseline
method only —
considering cost

N
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ng | np | Costs | App. Rev. | Rev. | Cost - (App. Rev.) | Cost-Rev. | x | %Gap
10 10 | 689.1 - 3428 | 689.1 346.3 - 0
10 | 10 | 698.5 383.7 383.7 | 314.8 314.8 1 |0
10 | 10 | 698.5 383.7 383.7 | 314.8 314.8 5|0
10 | 10 | 698.5 383.7 383.7 | 314.8 314.8 100
10 | 20 1419.2 | - 370.7 1419.2 677.7 - 1.8
10 |20 | 1459.7 | 405.9 407 647.9 645.7 1 | 34
10 |20 | 14341 | 397.8 400.7 | 638.5 632.7 5 |28
10 |20 | 14355 | 4035 403.5 | 6284 628.4 10 | 2.5
20 10 13922 | - 770.4 1392.2 621.8 - 0.1
20 10 14229 | 807.3 815.7 | 615.6 607.2 | 0.1
20 10 14229 | 807.3 815.7 | 615.6 607.2 5 |01
20 10 1413.6 | 806.5 811.2 | 607.1 602.4 10 | 0.1
50 | 10 | 33758 | - 1845.2 | 3375.8 1530.6 . 1.8
50 | 10 | 3528.2 | 2010 2032.2 | 1518.2 1496.0 1 |75
50 10 | 3499.0 | 2031.5 2039.1 | 1467.5 1459.9 5 38
50 10 | 34898 | 20253 2037.3 | 1464.4 14524 10 | 3.6
100 | 100 | 62204.2 | - 3651.1 | 62204.2 25693.2 - |28
100 | 100 | 65911.4 | 4159.3 4175.7 | 24317.9 24154.2 1 | 112
100 | 100 | 65531.7 | 4156.8 4173.1 | 23963.2 23800.5 5 |95
100 | 100 | 65258.6 | 4154.3 4172.1 | 237149 23537.2 10 | 84

.

8.36%
improvement
over baseline

~

J




Summary

Speed and cost should be jointly optimised
Speed objective is submodular and can be evaluated with a data query

A b
P
Leverage parametric optimization |speea(z) Origin#2 i
: : j2/5peed(z) . :
Subsampling strategy to reduce complexity ol — i
“= o o [t 8
s\ L= L
o >
1 _ |Origin#1 @ Morning o | Origin#1 @ Night
= |:O gin#2 @ Mornin g:| 2= [Origin#Z Q Morning}

8.36% speed and cost benefits compared to baseline
No additional computational cost compared to baseline
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