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Success Stories from Control Theory
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Can we simplify the control design?

Force perturbations applied to the torso.
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Can we simplify the control design?

Force perturbations applied to the torso.
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Today’s goals:

Desigh a data-efficient reinforcement learning algorithm
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Today's Example

Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia



Lesson from Model Predictive Control (MPC)
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Predicted Trajectory

Predicted Cost

Safe Region

» Predicted trajectory given by Prediction Model

» Safe region estimated by the Safe Set
» Predicted cost estimated by



Three key components to learn
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Three key components to learn

Prediction Model Value Function

Model-based

Reinforcement
Learning

Model-free

Reinforcement
Learning

Data Efficient Learning!

Safety-critical
Control

Safe Set



Outline

» |terative Control Design for Deterministic Systems

» Autonomous Racing Experiments

» Uncertain Systems

» Multi-modal uncertainty and future steps



Outline

» |terative Control Design for Deterministic Systems



Iterative T asks

lterative data collection and policy update



lterative Tasks — Drone Example
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lterative Tasks — Drone Example

» State
«— |P| = position
~ |v|  |velocity

» Input u = a = acceleration
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lterative Tasks — Drone Example

» State
«— |P| = position
~ |v|  |velocity

» Input u = a = acceleration

\4

Dynamics

el =l 9] [+ a

Cost ka Qxx + ukT Ruy

» Constraints

Goalé Height
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Limited actuation!




lterative Tasks — Drone Example
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lterative Tasks — Drone Example

p

Starting State
- N o First Iteration
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Goal State

/
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Second lteration

» |teration = one execution of the task

» Objective: Drive the drone optimally from the starting state to the goal state




Learning Model Predictive Control (LMPC)

Exploit historical data



Learning Model Predictive Control (LMPC) — Key Idea

Given 5 — 1 trajectories, we define the following optimization problem:
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Assumption: A feasible trajectory is known | 5
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Definition: Sampled Safe Set
SS' = {Stored Data}

- Set of states from which
the task can be completed!
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Value Function Estimation
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Value Function Estimation

Starting State

First Iteration

Goal State

e

r! = state at time k of iteration i

J; = cumulative cost from zj,

Value Function

Vi(x) = min/\;;e[o,l] S JENE » Upper-bound on future
S p cumulated cost
8.1 Dk i TEAL = T ) 2 i Ay = 1




LMPC Summary

At each time ¢ of iteration j, solve
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LMPC Summary

At each time ¢ of iteration j, solve
N-1

J(z(t)) = min Z (2 Qg + up Rug) + VI~ (an)

Ugy---  UN -1
k=0
S.t. Lhkt+1 = f(:ck,uk),
o = x(t),

rp € X, up €U, Constructed using
zy € 1883t~ historical data

Vkel0,--- N —1]

Guarantees for constrained (linear) systems [1,2]

The properties of the (convex) safe set and (convex) V-function allows us to guarantee:

» Safety: constraint satisfaction at iteration j = satisfaction at iteration j+1

» Non-decreasing Performance: closed-loop cost at iteration j >= closed-loop cost at iteration j+1
» Performance Improvement: closed-loop cost strictly deceasing at each iteration (LICQ required)
» (Global) optimality: steady state trajectory is optimal for the original problem (LICQ required)

[1] U. Rosolia, F. Borrelli. “Learning model predictive control for iterative tasks. a data-driven control framework.” IEEE Transactions on Automatic Control (2018).
[2] U. Rosolia, F. Borrelli. “Learning model predictive control for iterative tasks: A computationally efficient approach for linear system.” IFAC-PapersOnLine (2017)
[3] U. Rosolia, Y. Lian, E. Maddalena, G. Ferrari-Trecate, and C. N. Jones. "On the Optimality and Convergence Properties of the Iterative Learning Model Predictive Controller." IEEE Transactions on Automatic Control (2022).



Practical Implementation

Learning MPC convex formulation



Linear(ized) LMPC

Given 5 — 1 trajectories, we define the following optimization problem:
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Linear(ized) LMPC

Given 5 — 1 trajectories, we define the following optimization problem:

J(z(t)) =, min
Agyees A

S.1.
oy €CSITH |
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o = x(t),
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ViTH (an)
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Linear(ized) LMPC

Given 5 — 1 trajectories, we define the following optimization problem:

N—-1

J(x(t)) = uo,m:{&_l Z (xZka + uZRuk) + Z Z JENL
A0, ot k=0 ki

S.t. Trar1 = f(xg, ug), }X{

Lo — x(t)v Vj_l(ZIZN)
T €X, ur €U,

pv sl e[ av =000 mAL Y Y A =102 0
ko ko i

Vk e [0,--- N —1]

» Convex optimization problem over inputs and lambdas
» Safety and performance improvement guarantees still hold (simple proofs as before)
» Converges to global optimal solution (Constraints Qualification Condition required)



Brijen Ashwin

Knot-Tying Arm 1 Trajectory Demo
< B Learned

Safe Set constructed using non-parametric estimation
Model ensemble and input sampling strategies for MPC
Knot tying task on real surgical robot with inefficient demos (red)
Constraints: stay within 1 cm tube of reference trajectory
SAVED successfully smooths + optimizes demos

vV v v VvyYy

“Safety Augmented Value Estimation from Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks.”, B. Thananjeyan*, A. Balakrishna*, U. Rosolia, F. Li, R.
McAllister, J. E. Gonzalez, S. Levine, F. Borrelli, K. Goldberg IEEE Robotics and Automation Letters (RA-L) (2020)

*= equal contribution



Comparison with Approximate DP (aka RL)

» Some references:
+ Bertsekas paper connecting MPC and ADP [1], books on RL and OC [2,3]
+ Lewis and Vrabie survey [4]
% Recht survey [5]

» Learning MPC highlights
« Continuous state and action formulation
« Constraints satisfaction
% V-function constructed locally based on cost/model driven exploration
% V-function at stored state is “exact” and upperbounds at intermediate points

[1] D. Bertsekas, “Dynamic programming and suboptimal control: A survey from ADP to MPC.” European Journal of Control 11.4-5 (2005)

[2] D. Bertsekas, “Reinforcement learning and optimal control.” Athena Scientific, 2019.

[3] D. Bertsekas, “Distributed Reinforcement Learning” http://web.mit.edu/dimitrib/www/RL 2 Rollout & Pl.pdf

[4] F. Lewis, Frank, and D. Vrabie. "Reinforcement learning and adaptive dynamic programming for feedback control." IEEE circuits and systems magazine 9.3 (2009)
[5] R. Benjamin. "A tour of reinforcement learning: The view from continuous control." Annual Review of Control, Robotics, and Autonomous Systems 2 (2019)



http://web.mit.edu/dimitrib/www/RL_2_Rollout_&_PI.pdf

Learning MPC = Forward Value lteration
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Dynamic Programming: LMPC:
» Gridding, global properties » No Gridding, local properties
» Backward, one-step iteration » Forward, multi-step prediction

» LICQ required for optimality



Example |I: Constrained LQR

Infinite Time Optimal Control Problem

The goal of the control design is to solve the
following constrained LQR problem for the

Starting State ; , double integrator system,
® 1) =uxg, Vj >0

o
min E r, Qxy + u) Ruy,

® U, UL 5. --
k=0

s.t. xg=uxg,

vy, [0

Origin ® ZIJ’;CEX, ukEU,VkZO




Example |I: Constrained LQR

Assumption: A first feasible trajectory at iteration 0is given

lterative LMPC
80
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Assumption: A first feasible trajectory at iteration 0is given

lterative LMPC
80 -

Step 0: Set iteration counter j=0 70+

60 -

[teration cost
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t

—> | Step 1: Compute the roll-out cost for the

recorded data up to iteration j N
. . ] . ~— 40 -
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Assumption: A first feasible trajectory at iteration 0is given

lterative LMPC

Step 0: Set iteration counter j=0

Step 1: Compute the roll-out cost for the
recorded data up to iteration j

—| Step 2: Define V7 which interpolates
linearly the roll-out cost

Step 3: Run a closed-loop simulation at
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Step 5: Set iteration counter j = j+1. Go
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Example |I: Constrained LQR

Assumption: A first feasible trajectory at iteration 0is given

lterative LMPC

Step 0: Set iteration counter j=0

Step 1: Compute the roll-out cost for the
recorded data up to iteration j

Step 2: Define V7 which interpolates
linearly the roll-out cost

Step 3: Run a closed-loop simulation at
iteration j+1

Step 5: Set iteration counter j = j+1. Go
to Step 1

Key Messages:
» The cost function is defined on a subset of the state space.
» The LMPC explores the state space in order to enlarge the terminal cost domain.
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Different initial conditions at each iteration
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Different initial conditions at each iteration




Outline

» Autonomous Racing Experiments



Autonomous Racing

Goal: Minimize lap time

Requirement: Guarantee safety




Learning Model Predictive Controller

Given 5 — 1 trajectories, we define the following optimization problem:

N—1
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Learning Model Predictive Controller

Given 5 — 1 trajectories, we define the following optimization problem:

N-1

Jéﬁfﬁc” () = ) an Z h(zw,ug) + V72 (zy)
tye--y UN -1 —0

S.t.

Try1 = AgTp + Brug + Ck,
/ Ly — X,
Prediction o e X, up € U, Vk € 0,---,N —1]
Model = CSj_l,
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SIEIRTROSS

Y
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System ID in Autonomous Racing

» Nonlinear Dynamical System,

io=g+ =Y F

i
w. — %(Q(Fylﬂ) — b(Fyz,.:a) T C(_Fiﬁl,:a T FZB2,4)
X =acosyy—ysiny, Y =xsiny + ycosy



System ID in Autonomous Racing

» Nonlinear Dynamical System,

io=g+ =Y F

i
w. — T{(Q(Fylﬁ) — b<Fy2,.3) T C(_Ffﬂl,s T FSB2,4>
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System ID in Autonomous Racing

» Nonlinear Dynamical System,

5

_th T % Ez Fyi
- I_ly(a(Fylg) — b<Fy2’,3) + C(_ r1,3 T F5”2a4)

y
v
X

T COS w — y'sin w, Y = xsin w + y COS w Kinematic Equations

» Identifying the Dynamical System
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RO

Linearized Kinematics
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Linearized Kinematics
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Linearized Kinematics

Linearized Kinematics

Linearization around predicted trajectory



System ID in Autonomous Racing

» Nonlinear Dynamical System,

5

:_@w+%ZiFyi

— I_ly(a(Fylg) — b<Fy2’,3) + C(_ r1,3 T FZE?A)

Dynamic Equations

y
v
X

— T COS w — y Sin Zp, Y = T SIn Qp — y COS w Kinematic Equations

» Identifying the Dynamical System

J _
Loyt =

Tyt
Yk+1]t
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Xit1)t

RO

Linearized Kinematics
Linearized Kinematics

Linearized Kinematics
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Linearized Kinematics
Linearized Kinematics

Linearization around predicted trajectory



System ID in Autonomous Racing

» Nonlinear Dynamical System,
. 1
. 1
— —l’w + m Ez Fyi

>

5

— I_ly(a(Fylg) — b<Fy2’,3) + C(_ r1,3 T FZE?A)

Dynamic Equations

y
v
X

— T COS w — y Sin Zp, Y = T SIn w — y COS w Kinematic Equations

|dentifying the Dynamical System

J _
Loyt =

Tyt
Yk+1]t
Vkt1)t
Xit1)t

Local Linear Regression
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Hyundai California Proving Ground

" Hyundai California Proving
- Grounds, California City



Hyundai California Proving Ground

Starting Line

Finish Line




Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia




Lap Time
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90 The control policy is
constructed using ~1k
80 data points (last 2 laps)
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60 The control action is
computed using ~100
50 data points
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Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia




Velocity Profile at Convergence (Curve 1)
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Velocity Profile at Convergence (Chicane)
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The key components

» Predicted trajectory given by prediction model
» Predicted cost estimated by
» Safe region estimated by the safe set

Prediction Model

Model-based
Reinforcement
Learning

Safety-critical Data Efficient Learning!

Control

Safe Set



Do you need the safe set? — Yes
LMPC without Invariant Set

The controller extrapolates the Q-function on the Vx dimension




Do you need to Predict to Learn? Yes

When the LMPC horizon is N = 1 the controller
» solves the Bellman equation using the Q-function as value function approximation
» does not explore the state space as it cannot plan outside the safe set
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Do you need to Predict at Convergence? No

Lap Time at each iteration

Average CPU Load at each iteration

e
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Do you need to Predict at Convergence? No
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Do you need to Predict at Convergence? No

-

7 20 Lap Time at each iteration
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Do you need to Predict at Convergence? No
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Outline

» |terative Control Design for Deterministic Systems

» Autonomous Racing Experiments



Outline

» |terative Control Design for Deterministic Systems

» Autonomous Racing Experiments

» Uncertain Systems

» Multi-modal uncertainty and future steps



Model Estimation: An lterative Linearization Strategy



Model Estimation: An lterative Linearization Strategy
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Model Estimation: An lterative Linearization Strategy

» Linearize estimated dynamics around a candidate trajectory

_ Ti42|t
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Model Estimation: An lterative Linearization Strategy

» Linearize estimated dynamics around a candidate trajectory
» Estimate confidence intervals where the system dynamics are accurate
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Model Estimation: An lterative Linearization Strategy

» Linearize estimated dynamics around a candidate trajectory
» Estimate confidence intervals where the system dynamics are accurate
» Probabilistic guarantees for closed-loop constraint satisfaction

t+N—1
J*(x(t)) = min max Z h(xkﬁ7 uk|t) + Q($t+Tt|t) Linearized Estimate
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Lt|t = (1) “Trust region” and
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Model Estimation: An lterative Linearization Strategy

» Linearize estimated dynamics around a candidate trajectory
» Estimate confidence intervals where the system dynamics are accurate
» Probabilistic guarantees for closed-loop constraint satisfaction

t+N—1
J*(x(t)) = min max Z h(xkﬁ7 uk|t) + Q($t+Tt|t) Linearized Estimate

ur  we P— ‘//

S.t. Tk+1]t = Ak|t33k\t + Bk|tuk|t T Wi |
Uklt € Ugle, Trlr € Xl

\
Lt|t = (1) “Trust region” and

uncertaint
TN € O o Y

\V/wk|t EWk|t,\V/k:t,,t—|—N—]_

“Control of Unknown Nonlinear Systems with Linear Time-Varying MPC. ” D. Papadimitriou, U. Rosolia, and F. Borrelli. in 2020 Conference on Decision and Control



Safe Sets and Value Functions Estimation via Sampling



Safe Sets and Value Functions Estimation via Sampling

O Ccontroller #1
O Controller #2

1.5

0.5

I

goal set

Collect several trajectories with the
same controller

Safe sets computed as before using
multiple trajectories

estimate either the
mean or worst-case cost

All statement hold with some
probability that is proportional to
the amount of data

U. Rosolia, and F. Borrelli. "Sample-based learning model predictive control for linear uncertain systems." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019.
U. Rosolia, X. Zhang, and F. Borrelli. "Robust learning model predictive control for linear systems performing iterative tasks." IEEE Transactions on Automatic Control (2021).
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» Multi-modal uncertainty and future steps



Why multi-modal uncertainty?



Why multi-modal uncertainty?

Start High wind realization #1 Goal




Why multi-modal uncertainty?

Plan a trajectory around the uncertain region

Start High wind realization #1 Goal




Why multi-modal uncertainty?

High wind

realization #2

Start Goal



Why multi-modal uncertainty?

High wind

realization #2

Plan a trajectory around the uncertain region




Why multi-modal uncertainty?

High'wind
realization #2

High wind realizatic




Why multi-modal uncertainty?

Plan a trajectory around the both uncertain regions

High'wind
realization #2

Start High wind realizatic Goal




Why multi-modal uncertainty?

Measurement radius
- - O ~—

High'wind
realization #2

Start High wind realizatic




Why multi-modal uncertainty?

Measurement radius
—_— S -—
- — ~—y

Bifurcation point //
High'wind
realization #2

Start High wind realizatic Goal



In uncertain environments is needed to plan over strategies
and not over trajectories




Planning in Multi-modal Uncertain Environments

. I. Batkovic Dr. Y. Chen
Highway example

Controlled vehicle

Human vehicle
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. I. Batkovic Dr. Y. Chen
Highway example
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Human vehicle



Planning in Multi-modal Uncertain Environments

. I. Batkovic Dr. Y. Chen
Highway example

Controlled vehicle

Human vehicle



Planning in Multi-modal Uncertain Environments

: S . . Batkovic  Dr.Y.Ch
nghway example: optimizing over policies! atkovic r. Y. Chen

Controlled vehicle

Human vehicle

@ Discrete partially observable state e € £ = {1,..., €|}

@ Discrete observation o € O = {1,...,|0|}

@ Observable states z € R”

Mixed-Continuous and Mixed-Observable
Markov Decision Process

I. Batkovic, U. Rosolia, M. Zanon, and P. Falcone. "A Robust Scenario MPC Approach for Uncertain Multi-modal Obstacles." IEEE Control Systems Letters 5, no. 3 (2020): 947-952.
Y. Chen, U. Rosolia, W. Ubellacker, N. Csomay-Shanklin,and A. D. Ames "Interactive multi-modal motion planning with Branch Model Predictive Control” to appear on RA-L.
U. Rosolia, Y. Chen, S. Daftry, M. Ono, Y. Yue, and A.D. Ames. “The mixed-observable constrained linear quadratic regulator problem: the exact solution and practical algorithms” arXiv:2108.12030.



Planning in Multi-modal Uncertain Environments

Optimizing over
open-loop actions

Optimizing over
closed-loop policies

7.5

5.0 A

Py -——
-




How to reduce the computational complexity?

Controlled vehicle

Human vehicle



How to reduce the computational complexity?

Controlled vehicle

Human vehicle

Branch when a new measurement is collected

!

Complexity is exponential in the horizon length




How to reduce the computational complexity?

‘ Learn safe set and value functions to reduce the horizon length ‘

Controlled vehicle

Human vehicle

Branch when a new measurement is collected

Complexity is exponential in the horizon length

U. Rosolia, Y. Chen, S. Daftry, M. Ono, Y. Yue, and A.D. Ames. “The mixed-observable constrained linear quadratic regulator problem: the exact solution and practical algorithms” 2021, arXiv:2108.12030.



Code available online

Prediction Model

Model-based
Reinforcement

j_Learning  f

& urosolia / RacingLMPC

<> Code @) Issues 4

master ~

urosolia adding mpc

src

) .gitignore

" README.md

README.md

Learning Model Predictive Control (LMPC)
for autonomous racing

The Learning Model Predictive Control (LMPC) is a data-driven control framework
developed at UCB in the MPC lab. In this example, we implemented the LMPC for the
autonomous racing problem. The controller drives several laps on race track and it
learns from experience how to drive faster.

$ 7 branches

b49c95e on Oct 1, 2020 ) 118 commits

7 Star | 151 % Fork 43
@ Security
About @

Implementation of the
Learning Model Predictive
Controller for autonomous
racing

[0 Readme

Releases

O 11tags

Create a new release

Packages

No packages published
Publish your first package
Contributors 3

1 urosolia Ugo Rosolia
" sarahxdean Sarah Dean

B 14 Jun Z;
©_ junzengx un Zen
°L ) 9

Languages

® Python 100.0%

Data Efficient Learning!

Course material online

Safety-critical

Safe Set

Advanced Topics in Machine Learning . .

CS 159 - Caltech - Spring 2021

Learning

Predictive control & model-based reinforcement learning

Lecture schedule

# Date Subject
0 3/30 Introduction
Topic 1—RL & Control
1 3/30 Discrete MDPs
2  4/01 Optimal Control
3 4/06 Model Predictive Control
4 4/08 Learning MPC
5  4/13 Model Learning in MPC

6  4/15 Planning Under Uncertainty and Project
Ideas

Resources

pdf / vid

pdf / vid
pdf / vid
pdf / vid
pdf / vid / supp
pdf / vid
pdf / vid
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Possible goal location #1
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Possible goal location #2
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Why multi-modal uncertainty?
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Possible goal location #1

Possible goal location #2




Why multi-modal uncertainty?

Possible goal location #1
®
Start
@
Possible goal location #2




Why multi-modal uncertainty?

Possible goal location #1
~O
Start
\
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Possible goal location #2




Why multi-modal uncertainty?

Possible goal location #1

o

@ Discrete partially observable state e € € = {1,...,|E|}

@ Discrete observation o € O = {1,...,|0|}

® Observable states z € R™
Start - - -

Mixed-Continuous and Mixed-Observable
Markov Decision Process
—@

Possible goal location #2



Example 2

In this example N = 60and N, = 30

10.0 9 =%= Optimal Trajectory
B Initial Condition
7.5 % Branching time -
B Goalfore=0
504 MW Goalfore=1
2.5 1
0.0 - Itk
—2.5
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—10.0 A




Example 2

In these examples N = 60and N, = 30

10.0 1 =%= Optimal Trajectory 10.0 4 =%= Optimal Trajectory
B Initial Condition B Initial Condition
7.5 % Branching time - 7.54 % Branching time -
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Example 2

N = 60and N, =12

10.0 9 =%= Optimal Trajectory
B Initial Condition
7.54 % Branching time *M
e
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Optimal cost: 1237.37

N = 60and N, =30
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Optimal cost: 3264.31




