

Learning how to autonomously race a car: a predictive control approach

Ugo Rosolia

AMBER Lab
California Institute of Technology

June, 2021

Success Stories from Al

Alpha GO

OpenAl

Google

Success Stories from Control Theory

Boston Dynamics

Stanford Dynamic Design Lab

Standard Control Pipeline

Optimal Trajectory

Dynamic Programming

Bellman Recursion

Trajectory Tracking

Frequency Domain

Nonlinear Control

System Identification

Tire Dynamics

Vehicle Dynamics

Can we simplify the control design?

DeepMind

Can we simplify the control design?

M. Janner, J. Fu, M. Zhang, and S. Levine. "When to trust your model: Model-based policy optimization." arXiv preprint arXiv:1906.08253 (2019)

Today's Example

Learning Model Predictive Controller full-size vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Lessons from Model Predictive Control (MPC)

- Predicted trajectory given by Prediction Model
- ► Safe region estimated by the Safe Set
- Predicted cost estimated by Value Function

Lessons from Model Predictive Control (MPC)

▶ Predicted trajectory given by Prediction Model

Identified from historical data

- ► Safe region estimated by the Safe Set
- Predicted cost estimated by Value Function

Lessons from Model Predictive Control (MPC)

- Predicted trajectory given by Prediction Model
- ► Safe region estimated by the Safe Set
- Predicted cost estimated by Value Function

Identified from historical data

Estimate these components to simplify the design

Prediction Model

Value Function

Value Function

Theoretical Foundations of Reinforcement Learning

Theoretical Foundations of Reinforcement Learning

Principle of Optimality:

Map from all possible board configurations to the cost!

Deep Reinforcement Learning

Principle of Optimality:

$$u^* = \arg\min_{u \in U} \left[h(x,u) + \mathbb{E}[V^*(x^+)|x,u]\right]$$
 Optimal Instantaneous Future cost Future state Control Action

Principle of Optimality:

Principle of Optimality:

Model-Based RL

$$[u^*, u_1, \dots, u_{N-1}] = \underset{u_k \in U}{\operatorname{arg \, min}} \mathbb{E} \Big[\sum_{k=0}^{N-1} h(x_k, u_k) + V^*(x_N) \Big]$$

Principle of Optimality:

Model-Based RL

$$[u^*, u_1, \dots, u_{N-1}] = \underset{u_k \in U}{\operatorname{arg \, min}} \mathbb{E} \Big[\sum_{k=0}^{N-1} h(x_k, u_k) + V^*(x_N) \Big]$$

The above, for long horizon N is approximated as

$$[u^*, u_1, \dots, u_{N-1}] = \underset{u_k \in U}{\operatorname{arg \, min}} \mathbb{E} \Big[\sum_{k=0}^{N-1} h(x_k, u_k) \Big]$$

Principle of Optimality:

Model-Based RL

$$[u^*, u_1, \dots, u_{N-1}] = \underset{u_k \in U}{\operatorname{arg \, min}} \mathbb{E} \Big[\sum_{k=0}^{N-1} h(x_k, u_k) + V^*(x_N) \Big]$$

The above, for long horizon N is approximated as

$$[u^*, u_1, \dots, u_{N-1}] = \underset{u_k \in U}{\operatorname{arg \, min}} \mathbb{E} \Big[\sum_{k=0}^{N-1} h(x_k, u_k) \Big]$$

Model-Free RL

Define the Q-factor:

$$Q^*(x, u) = h(x, u) + \mathbb{E}[V^*(x^+)|x, u]$$

Then the optimal action is

$$u^* = \arg\min_{u \in \mathcal{U}} Q^*(x, u)$$

What is different in safety-critical systems?

State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} position \\ velocity \end{bmatrix}$$

State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} position \\ velocity \end{bmatrix}$$

Input u = a = acceleration

State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} position \\ velocity \end{bmatrix}$$

- Input u = a = acceleration
- Dynamics

$$\begin{bmatrix} p_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_k \\ v_k \end{bmatrix} + \begin{bmatrix} 0 \\ a_k \end{bmatrix}$$

State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} position \\ velocity \end{bmatrix}$$

- Input u = a = acceleration
- Dynamics

$$\begin{bmatrix} p_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_k \\ v_k \end{bmatrix} + \begin{bmatrix} 0 \\ a_k \end{bmatrix}$$

 $ightharpoonup \operatorname{Cost} x_k^{\top} Q x_k + u_k^{\top} R u_k$

State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} position \\ velocity \end{bmatrix}$$

- lnput u = a = acceleration
- Dynamics

$$\begin{bmatrix} p_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_k \\ v_k \end{bmatrix} + \begin{bmatrix} 0 \\ a_k \end{bmatrix}$$

- $ightharpoonup \operatorname{Cost} x_k^{\top} Q x_k + u_k^{\top} R u_k$
- Constraints

$$\begin{bmatrix} -5 \\ -5 \\ -0.5 \end{bmatrix} \le \begin{bmatrix} p_k \\ v_k \\ a_k \end{bmatrix} \le \begin{bmatrix} 5 \\ 5 \\ 0.5 \end{bmatrix}$$

State

$$x = \begin{bmatrix} p \\ v \end{bmatrix} = \begin{bmatrix} position \\ velocity \end{bmatrix}$$

- lnput u = a = acceleration
- Dynamics

$$\begin{bmatrix} p_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_k \\ v_k \end{bmatrix} + \begin{bmatrix} 0 \\ a_k \end{bmatrix}$$

- $ightharpoonup \operatorname{Cost} x_k^{\top} Q x_k + u_k^{\top} R u_k$
- Constraints

$$\begin{bmatrix} -5 \\ -5 \end{bmatrix} \leq \begin{bmatrix} p_k \\ v_k \end{bmatrix} \leq \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} -0.5 \\ a_k \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

Limited actuation!

Driving the drone to the origin is **impossible** due to inertia and input saturation

Driving the drone to the origin is **impossible** due to inertia and input saturation

The drone can be driven to the origin only from a **subset** of the feasible set

Driving the drone to the origin is **impossible** due to inertia and input saturation

The drone can be driven to the origin only from a subset of the feasible set

Key Message: We need to approximate the value function only over a subset of the feasible set

Computation of Safe Sets in the Control

Systems & Control: Foundations & Applications Franco Blanchini Stefano Miani Set-Theoretic Methods in Control **Second Edition** Birkhäuser

Three key components to learn

Three key components to learn

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x(t)) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, \mathbf{x})$$

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x(t)) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, x)$$

Value Function

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x(t)) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, x)$$
s.t.

$$x_{k+1} = A_k x_k + B_k u_k + C_k,$$

$$x_t = x(t),$$

Value Function

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x(t)) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, x)$$

s.t.

$$x_{k+1} = A_k x_k + B_k u_k + C_k,$$

$$x_t = x(t),$$

Value Function

Prediction Model

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x(t)) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, x)$$

s.t.

$$x_{k+1} = A_k x_k + B_k u_k + C_k,$$

$$x_t = x(t),$$

Value Function

Prediction $x_k \in \mathcal{X}, u_k \in \mathcal{U}, \forall k \in [0, \dots, N-1]$

Model

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x(t)) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, x)$$

s.t.

$$x_{k+1} = A_k x_k + B_k u_k + C_k,$$

$$x_t = x(t),$$

Value Function

Prediction $x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ \forall k \in [0, \cdots, N-1]$

Model $x_N \in \mathcal{CS}^{j-1}(\mathbf{x}),$

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x(t)) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, x)$$

s.t.

$$x_{k+1} = A_k x_k + B_k u_k + C_k,$$

$$x_t = x(t),$$

Value Function

Prediction $x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ \forall k \in [0, \cdots, N-1]$

Model $x_N \in \mathcal{CS}^{j-1}(\mathbf{x}),$

Safe Region

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x(t)) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, \mathbf{x})$$

s.t.

$$x_{k+1} = A_k x_k + B_k u_k + C_k,$$

$$x_t = x(t),$$

Prediction $x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ \forall k \in [0, \cdots, N-1]$

Model $x_N \in \mathcal{CS}^{j-1}(\mathbf{x}),$

At time t of lap j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x(t)) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, \mathbf{x})$$

s.t.

$$x_{k+1} = A_k x_k + B_k u_k + C_k,$$

$$x_t = x(t),$$

Prediction $x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ \forall k \in [0, \cdots, N-1]$

Model $x_N \in \mathcal{CS}^{j-1}(\mathbf{x}),$

In this topic area you will learn how to leverage DNN to estimate system dynamics

Nonlinear Dynamical System,

$$\ddot{x} = \dot{y}\dot{\psi} + \frac{1}{m}\sum_{i}F_{x_{i}}
 \ddot{y} = -\dot{x}\dot{\psi} + \frac{1}{m}\sum_{i}F_{y_{i}}
 \ddot{\psi} = \frac{1}{I_{z}}(a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}})
 \dot{X} = \dot{x}\cos\psi - \dot{y}\sin\psi, \quad \dot{Y} = \dot{x}\sin\psi + \dot{y}\cos\psi$$

Nonlinear Dynamical System,

Nonlinear Dynamical System,

$$\begin{array}{ll} \ddot{x} & = \dot{y}\dot{\psi} + \frac{1}{m}\sum_{i}F_{x_{i}} \\ \ddot{y} & = -\dot{x}\dot{\psi} + \frac{1}{m}\sum_{i}F_{y_{i}} \\ \ddot{\psi} & = \frac{1}{I_{z}}(a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}}) \\ \dot{X} & = \dot{x}\cos\psi - \dot{y}\sin\psi, \quad \dot{Y} = \dot{x}\sin\psi + \dot{y}\cos\psi \end{array}$$
 Kinematic Equations

Identifying the Dynamical System

Linearization around predicted trajectory

Nonlinear Dynamical System,

$$\ddot{x} = \dot{y}\dot{\psi} + \frac{1}{m}\sum_{i}F_{x_{i}}
\ddot{y} = -\dot{x}\dot{\psi} + \frac{1}{m}\sum_{i}F_{y_{i}}
\ddot{\psi} = \frac{1}{I_{z}}(a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}})
\dot{X} = \dot{x}\cos\psi - \dot{y}\sin\psi, \quad \dot{Y} = \dot{x}\sin\psi + \dot{y}\cos\psi$$

Identifying the Dynamical System

Linearization around predicted trajectory

Dynamic Equations

Kinematic Equations

Nonlinear Dynamical System,

$$\ddot{x} = \dot{y}\dot{\psi} + \frac{1}{m}\sum_{i}F_{x_{i}}
\ddot{y} = -\dot{x}\dot{\psi} + \frac{1}{m}\sum_{i}F_{y_{i}}
\ddot{\psi} = \frac{1}{I_{z}}(a(F_{y_{1,2}}) - b(F_{y_{2,3}}) + c(-F_{x_{1,3}} + F_{x_{2,4}})
\dot{X} = \dot{x}\cos\psi - \dot{y}\sin\psi, \quad \dot{Y} = \dot{x}\sin\psi + \dot{y}\cos\psi$$

Dynamic Equations

Kinematic Equations

Local Linear Regression

$$x_{k+1|t}^{j} = \begin{bmatrix} \dot{x}_{k+1|t} \\ \dot{y}_{k+1|t} \\ \ddot{y}_{k+1|t} \\ X_{k+1|t} \end{bmatrix} = \begin{bmatrix} \sup \sum_{i,s} K(x_{k|t}^{j} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{j} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{j} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty} \sum_{i,s} K(x_{k|t}^{i} - x_{s}^{i}) ||\Lambda_{y} \begin{bmatrix} x_{k|t}^{j} \\ u_{k|t}^{j} \\ 1 \end{bmatrix} - y_{s+1}^{i}||, \forall y \in \{\dot{x}, \dot{y}, \ddot{\psi}\} \\ \lim_{i \to \infty$$

Linearization around predicted trajectory

At time t of iteration j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\to N}^{\text{LMPC},j}(x_t) = \min_{u_t,\dots,u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, \mathbf{x})$$

s.t.

$$x_{k+1} = A_k x_k + B_k u_k + C_k,$$

$$x_t = x_t,$$

Predictior Model

Prediction
$$x_k \in \mathcal{X}, u_k \in \mathcal{U}, \forall k \in [0, \dots, N-1]$$

$$x_N \in \mathcal{CS}^{j-1}(\mathbf{x}),$$

At time t of iteration j solve the following Constrained Finite Time Optimal Control Problem (CFTOCP)

$$J_{0\rightarrow N}^{\mathrm{LMPC},j}(x_t) = \min_{u_t, \dots, u_{N-1}} \sum_{k=0}^{N-1} h(x_k, u_k) + V^{j-1}(x_N, x)$$
 s.t.
$$x_{k+1} = A_k x_k + B_k u_k + C_k,$$

$$x_t = x_t,$$

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ \forall k \in [0, \dots, N-1]$$

$$x_N \in \mathcal{CS}^{j-1}(x),$$
 Safe Set

Value Function

U. Rosolia, and F. Borrelli. "Learning model predictive control for iterative tasks. a data-driven control framework." *IEEE Transactions on Automatic Control* 63.7 (2017): 1883-1896.
U. Rosolia, and F. Borrelli. "Learning how to autonomously race a car: a predictive control approach." *IEEE Transactions on Control Systems Technology* 28.6 (2019): 2713-2719.

Learning Model Predictive Controller full-size vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Lap Time

Learning Model Predictive Controller full-size vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia

Velocity Profile at Convergence (Curve 1)

Velocity Profile at Convergence (Chicane)

The key components

- Predicted trajectory given by prediction model
- Predicted cost estimated by value function
- ► Safe region estimated by the safe set

What is next?

Partial Observability

Multi-agent systems

► Hierarchy + Learning

▶ Optimize over strategies, not trajectories

Thanks! Questions?

Code available online

Course material online

