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Success Stories from Control Theory
Stanford Dynamic Design Lab
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Can we simplify the control design?

Force perturbations applied to the torso.
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Today’s goals:

» Review standard model-based and model-free RL strategies

» Design efficient model-based RL framework

» Summary of the challenges ahead of us




Today's Example

Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia



Lessons from Model Predictive Control (MPC)
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Lessons from Model Predictive Control (MPC)
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Predicted Trajectory

Predicted Cost

Safe Region

» Predicted trajectory given by Prediction Model } dentified from historical data
» Safe region estimated by the Safe Set

Estimate these components
» Predicted cost estimated by to simplify the design
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Three key components to learn

Prediction Model Value Function

Model-based RL Model-free RL



Theoretical Foundations of Reinforcement Learning
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Theoretical Foundations of Reinforcement Learning

Principle of Optimality:
u* = argmin [h(z,u) + E[V*(27)|z, u|
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Deep Reinforcement Learning

Principle of Optimality:

Optimal
Control Action

w* = arg min
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Model-Based vs Model-Free
Principle of Optimality:
u* = argmin [h(z,u) + E[V*(27)|z, u|
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Model-Based vs Model-Free

Principle of Optimality:
u* = argmin [h(z,u) + E[V*(27)|z, u|
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Model-Based vs Model-Free

Principle of Optimality:

u* = argmin |h(z,u) + E[V*(z
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Optimal Instantaneous
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Model-Free RL
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Three key components to learn

Prediction Model

Model-based RL
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Three key components to learn

Safety-critical Control

Safe Set



What is different in safety-critical systems?
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Goalé Height

» State
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What is ditferent in safety-critical systems? Constraints

Goalé Height

» State
. — p| _ |position
~ |v|  |velocity
» Input u = a = acceleration
» Dynamics

el =l 5] [+ a

» Cost ka Qxx + ukT Ruy

» Constraints

51 [m] [5°
5|1 < |lvi| < |5
—0.5 ak 0.5

Limited actuation!
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What is ditferent in safety-critical systems? Constraints
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What is ditferent in safety-critical systems? Constraints
p

Driving the drone to the origin is impossible due
to inertia and input saturation

v The drone can be driven to the origin only from a
subset of the feasible set

Key Message: We need to approximate the value function only over a subset of the feasible set




Computation of Safe Sets in the Control

Systems & Control: Foundations & Applications
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Three key components to learn

Prediction Model Value Function

Model-based RL Model-free RL

Data Efficient Learning!

Safety-critical Control

Safe Set



Learning Model Predictive Controller
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Learning Model Predictive Controller

At time ¢ of lap jsolve the following Constrained Finite Time Optimal Control
Problem (CFTOCP)
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Learning Model Predictive Controller

At time ¢ of lap jsolve the following Constrained Finite Time Optimal Control
Problem (CFTOCP)
N—1
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Learning Model Predictive Controller

At time ¢ of lap jsolve the following Constrained Finite Time Optimal Control
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Learning Model Predictive Controller

At time ¢ of lap jsolve the following Constrained Finite Time Optimal Control

Problem (CFTOCP)
N—-1

oo (@)= min > h(zg,uk) + VI (@, 2)

Utqyeee s UWN —1
k=0

S.t.

In this topic area you will
Tipr1 = Arxr + Brur + Cg, learn how to leverage DNN to
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System ID in Autonomous Racing

» Nonlinear Dynamical System,
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System ID in Autonomous Racing

» Nonlinear Dynamical System,
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System ID in Autonomous Racing

» Nonlinear Dynamical System,
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System ID in Autonomous Racing

» Nonlinear Dynamical System,
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Learning Model Predictive Controller

At time ¢ of iteration j solve the following Constrained Finite Time Optimal

Control Problem (CFTOCP)
N—-1
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Learning Model Predictive Controller

At time ¢ of iteration j solve the following Constrained Finite Time Optimal

Control Problem (CFTOCP)
N—-1

J&gﬁc’j(aﬁt) = min Z h(zg,ur) + VI (xy, 2)
k=0

Uty UN —1
S.t.
Tp1+1 = Axzr + Brug + Ch,
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rr € X, up €U, Yk e 0,--- N —1]
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Safe Set

U. Rosolia, and F. Borrelli. "Learning model predictive control for iterative tasks. a data-driven control framework." /EEE Transactions on Automatic Control 63.7 (2017): 1883-1896.
U. Rosolia, and F. Borrelli. "Learning how to autonomously race a car: a predictive control approach." /EEE Transactions on Control Systems Technology 28.6 (2019): 2713-2719.



Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia




Lap Time
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The control policy is
constructed using ~1k
data points (last 2 laps)

The control action is
computed using ~100
data points




Learning Model Predictive Controller full-size

vehicle experiments

Credits: Siddharth Nair, Nitin Kapania and Ugo Rosolia




Velocity Profile at Convergence (Curve 1)
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Velocity Profile at Convergence (Chicane)
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The key components

» Predicted trajectory given by prediction model
» Predicted cost estimated by
» Safe region estimated by the safe set

Prediction Model
Model-based RL

Data Efficient Learning!

Safety-critical Control

Safe Set



What is next?

Goal State

» Partial Observability

Uncertain Region

Moving Obstacle -

» Multi-agent systems

Mid-level Low-level

High-level
Trajectory Planning Actuator Control

Decision Making

right , > T
left é/\_/.
measure g I &

<

Discrete time linear dynamics Continuous time nonlinear system

> H Ie ra rC hy —I_ Lea r n I n g Abstraction with partial observations
Frequency 1/T Hz Contlnuous Time

ion:

» Optimize over strategies, not trajectories




Code available online

& urosolia/RacingLMPC

<> Code () Issues 4 11 Pull requests 1

¥ master ~ $ 7 branches ©1tag

x urosolia adding mpc

| src adding mpc

N :
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[™ README.md update README

= README.md

for autonomous racing

learns from experience how to drive faster.

Lap: 31

() Actions

Go to file

@ Unwatch ~ 12

[T Projects [ wiki

b49c5e on Oct1,2020 & 118 commits

8 months ago
8 months ago

8 months ago
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Learning Model Predictive Control (LMPC)

The Learning Model Predictive Control (LMPC) is a data-driven control framework
developed at UCB in the MPC lab. In this example, we implemented the LMPC for the
autonomous racing problem. The controller drives several laps on race track and it

~e- Predicted Trajectory

1

2 3
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) Security
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Implementation of the
Learning Model Predictive
Controller for autonomous
racing
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